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Abstract

Unsupervised relation extraction aims at ex-
tracting relations between entities in text. Pre-
vious unsupervised approaches are either gen-
erative or discriminative. In a supervised
setting, discriminative approaches, such as
deep neural network classifiers, have demon-
strated substantial improvement. However,
these models are hard to train without super-
vision. To overcome this limitation, we in-
troduce two losses on the predicted relations
distribution. These losses improve the per-
formance of discriminative based models, and
enable us to train deep neural networks satis-
factorily, surpassing current state of the art on
three different datasets.

1 Introduction

Information extraction models aim at discovering
the underlying semantic structure linking entities
mentioned in a text. This can be used to build
knowledge bases, which are widely used in sev-
eral applications such as question answering (Yih
et al., 2015; Berant et al., 2013), document re-
trieval (Dalton et al., 2014) and logical reasoning
(Socher et al., 2013).

In the relation extraction (RE) task, we are in-
terested in discovering the semantic (binary) re-
lation that holds between two entities mentioned
in text. The end goal is to extract triplets of
the form (subject, relation, object). A consider-
able amount of work has been conducted on su-
pervised or weakly-supervised relation extraction
(Kambhatla, 2004; Zeng et al., 2015; Lin et al.,
2016), with recent state-of-the-art models using
deep neural networks (NN).

Developing unsupervised relation extraction
models is interesting for three reasons: they (1)
do not necessitate labeled data except for vali-
dating the models; (2) can uncover new relation
types; and (3) can be trained from large unlabeled
datasets, and then fine-tuned for specific relations.

The first unsupervised models used a cluster-
ing (Hasegawa et al., 2004; Banko et al., 2007)
or generative (Yao et al., 2011, 2012) approach.
The latter, which obtained state-of-the-art perfor-
mance, still makes a lot of simplifying hypotheses,
such as assuming that the entities are condition-
ally independent between themselves given the re-
lation. To train more expressive models, a shift
to discriminative approaches was necessary. The
open question then becomes how to provide a suf-
ficient learning signal to the classifier. To the best
of our knowledge, only Marcheggiani and Titov
(2016) followed this path by leveraging represen-
tation learning for modeling knowledge bases, and
proposed to use an auto-encoder model: their en-
coder extracts the relation from a sentence, that the
decoder uses to predict a missing entity. However,
their encoder is still limited compared to its super-
vised counterpart (e.g. Zeng et al. (2015)) and re-
lies on hand-crafted features extracted by natural
language processing tools, containing errors and
unable to discover new patterns, which might hin-
der performances.

More importantly, our initial experiments
showed that the above model was unstable, es-
pecially when using a deep NN relation classi-
fier. It converged to either of the two following
regimes, depending on hyper-parameter settings:
always predicting the same relation, or predicting
a uniform distribution. To overcome these limita-
tions, we propose to use two new losses alongside
a link prediction loss based on a fill-in-the-blank
task, and show experimentally that this is key to
learning deep neural network models. Our con-
tributions are the following: (i) We propose two
RelDist losses: a skewness loss, which encourages
the classifier to predict a class with confidence for
a single sentence, and a uniformity loss, which en-
courages the classifier to scatter a set of sentences
into different classes; (ii) We perform extensive
experiments on the usual NYT+FB dataset, as well



as two new datasets; (iii) We show that our RelD-
ist losses allow us to train a deep PCNN classifier
(Zeng et al., 2015) as well as improve performance
of feature-based models (Marcheggiani and Titov,
2016).

In the following, we first discuss related works
(Section 2) before describing our model (Section
3) and presenting experimental results (Section 4).

2 Related work

Relation extraction is a standard language classifi-
cation task: given a sentence containing two en-
tities, the goal is to predict what is the relation
linking these two entities. Most relation extraction
systems need to be trained on a labeled dataset.
However human annotation is expensive, and vir-
tually impractical when a large number of rela-
tions is involved.

As a result, most systems are trained on datasets
built through distant supervision (Mintz et al.,
2009), a compromise between the supervised and
unsupervised settings. It makes the following
assumption: if a sentence contains two entities
linked in a knowledge base, this sentence neces-
sarily conveys that relation. For example, distant
supervision aligns the sentence “Hubele1 received
the Nobel Prizee2 for his discovery” with the
triplet (Hubel, award received, Nobel Prize), thus
supervising the sentence with the label “award re-
ceived”. The resulting alignment are of a poorer
quality, and even though this method can leverage
large amounts of unlabeled text, the relation ontol-
ogy is still fixed by a knowledge base, the resulting
model being unable to discover new relations.

In the supervised setting, neural network mod-
els have demonstrated substantial improvement
over approaches using hand-crafted features. In
particular, piecewise convolutional neural net-
works (PCNN, Zeng et al., 2015) are now widely
used as a basis for other improvements, such as
the instance-level selective attention mechanism
of Lin et al. (2016) which follows the multi-
instance multi-label framework (Hoffmann et al.,
2011; Surdeanu et al., 2012). The recent NN ap-
proaches however need large amount of data to
achieve good performances.

In the unsupervised setting, models have no ac-
cess to annotated sentences or to a knowledge
base: other regularity hypotheses have to be made.
The resulting models can be categorized into ei-
ther the generative/clustering or discriminative ap-

proaches. The former try to cluster regularities in
the text surrounding two entities, while the latter
use discriminative models but have to make fur-
ther hypotheses, namely that a pair of given enti-
ties always share the same relation, to provide a
learning signal for the classifier.

Among clustering models, one of the earliest
work is from Hasegawa et al. (2004) who propose
building clusters by using cosine similarity on TF-
IDF vectors for the surrounding text. Later, the
OpenIE approaches (Banko et al., 2007; Angeli
et al., 2015) relied upon the hypothesis that the
surface form of the relation conveyed by a sen-
tence appears in the path between the two enti-
ties in its dependency tree. However, these lat-
ter works are too dependent on the raw surface
form and suffer from bad generalization. In our
previous example, OpenIE will extract the triplet
(Hubel, received, Nobel Prize), but simply replac-
ing “received” by “was awarded” might produce
a different relation even though the semantic re-
mains the same.

Related to these clustering approaches, the Rel-
LDA models (Yao et al., 2011, 2012) use a gener-
ative model inspired by LDA to cluster sentences:
each relation defines a distribution over a high-
level handcrafted set of features describing the re-
lationship between the two entities in the text (e.g.
the dependency path). However, these models are
limited in their expressiveness. More importantly,
depending on the set of features, they might fo-
cus on features not related to the relation extrac-
tion task.

We posit that discriminative approaches can
help in going further in expressiveness, espe-
cially considering recent results with neural net-
work models. To the best of our knowledge,
the only discriminative approach to unsupervised
relation extraction is the variational autoencoder
approach (VAE) proposed by Marcheggiani and
Titov, 2016): the encoder extracts the semantic re-
lation from hand-crafted features of the sentence
(related to those of Rel-LDA), while the decoder
tries to predict one of the two entities given the re-
lation and the other entity, using a general triplet
scoring function (Nickel et al., 2011). This scor-
ing function provides a signal since it is known
to predict to some extent relation triplets given
their embeddings. Among the input features of the
classifiers are the entities themselves, the resulting
model can thus be interpreted as an autoencoder



The sol was the currency of Peru between 1863 and 1985.

prefix infix suffixe1 e2

Figure 1: A sentence from Wikipedia where the conveyed relation is “currency used by”. We call s the sentence
with the two entities removed: s = (prefix, infix, suffix).

where the encoder part benefits from an additional
context. The proposed loss, based on the KL di-
vergence between the posterior distribution over
relations and a uniform prior on the relation distri-
bution, is very unstable in practice. Our proposed
approaches solve this unstability, and allows us to
train expressive models such as the PCNN model
(Zeng et al., 2015).

3 Model description

Our model focuses on extracting the relation be-
tween two entities in textual data, and assumes that
a recognition tool has identified named entities in
the text. Furthermore, like most works on relation
extraction, we limit ourselves to binary relations
and therefore consider sentences with two tagged
entities, as shown in Figure 1.

To provide a supervision signal to our rela-
tion classifier, we follow Marcheggiani and Titov
(2016) and use a fill-in-the-blank task, i.e. “The
sole1 was the currency of ? e2 between 1863 and
1985.”. To correctly fill in the blank, we could
directly learn to predict the missing entity, but in
this case we would not be able to learn a relation
classifier. Instead, we want to first learn that this
sentence expresses the semantic relation “currency
used by” before using this information for a super-
vised task: (i) We suppose that the relation can be
predicted by the text surrounding the two entities
alone (see Figure 1); (ii) We then try to predict
the missing entity given the predicted relation and
the other entity – this gives the supervision signal.
These hypotheses lead to the following formula-
tion of the fill-in-the-blank task:

p(e−i | s, ei) =
∑
r

p(r | s)︸ ︷︷ ︸
(i) classifier

p(e−i | r, ei)︸ ︷︷ ︸
(ii) link predictor

(1)

where e1 and e2 are the two entities, s is the
text surrounding them and r is the relation link-
ing them. As the link predictor can consider either
entity, we use ei to designate the given entity, and
e−i = {e1, e2} \ {ei} the one to predict.

The relation classifier p(r | s) and link predictor
p(e−i | r, ei) are trained jointly to reconstruct a

missing entity, but the link predictor cannot access
the input sentence directly. Thus, all the required
information must be condensed into r, which acts
as a bottleneck. We advocate that this information
is the semantic relation between the two entities.

Note that Marcheggiani and Titov (2016) did
not make our first independence hypothesis. In-
stead, their classifier is conditioned on both ei and
e−i, strongly relying on the fact that r is an infor-
mation bottleneck.

In the following, we first describe the relation
classifier p(r | s) in section 3.1, before introduc-
ing the link predictor p(e−i | r, ei) in section 3.2.
Arguing that the resulting model is unstable, we
describe the two new RelDist losses in section 3.3.

3.1 Unsupervised Relation Classifier

Our model for p(r | s) follows current state-of-
the-art practices for supervised relation extraction
by using a piecewise convolutional neural network
(PCNN, Zeng et al., 2015). The input sentence can
be split into three parts separated by the two enti-
ties (see Figure 1). In a PCNN, the model outputs a
representation for each part of the sentence. These
are then combined to make a prediction. Figure 2
shows the network architecture that we now de-
scribe.

First, each word of s is mapped to a real-valued
vector. In this work, we use standard word embed-
ding, initialized with GloVe1 (Pennington et al.,
2014), and fine-tune them during training. Based
on those embeddings, a convolutional layer detects
patterns in subsequences of words. Then, a max-
pooling along the text length combines all features
into a fixed-size representation. Note that in our
architecture, we obtained better results by using
three distinct convolutions, one for each sentence
part (i.e. the weights are not shared). We then ap-
ply a non-linear function (tanh) and sum the three
vectors into a single representation for s. Finally,
this representation is fed to a softmax layer to pre-
dict the distribution over the relations. This distri-
bution can be plugged into equation (1). Denoting

16B.50d from https://nlp.stanford.edu/
projects/glove/
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Figure 2: Our relation extraction model. Its input is the sentence with the entities removed s =
{prefix, infix, suffix}. Each part is run through a convolutional layer to give a fixed-size representation, which
are then fed to a softmax layer to make a prediction.

fPCNN our classifier, we have:

p(r | s) = fPCNN(r; s, θPCNN)

where θPCNN are the parameters of the classifier.

3.2 Link Predictor

The purpose of the link predictor is to provide su-
pervision for the relation classifier. As such, it
needs to be differentiable. We follow Marcheg-
giani and Titov (2016) to model p(ei | r, e−i), and
use an energy-based formalism, where ψ(e1, r, e2)
is the energy associated with (e1, r, e2). The prob-
ability is obtained as follows:

p(e1 | r, e2) ∝ exp(ψ(e1, r, e2)) (2)

where ψ is expressed as the sum of two standard
relational learning models:

ψ(e1, r, e2) = uTe1Arue2︸ ︷︷ ︸
RESCAL

+ uTe1Br + uTe2Cr︸ ︷︷ ︸
Selectional Preferences

where u ∈ R|E|×m is an entity embedding ma-
trix, A ∈ R|R|×m×m is a three-way tensor encod-
ing the entities interaction andB,C ∈ R|R|×m are
two matrices encoding the preferences of each re-
lation of certain entities, and the hyper-parameter
m is the dimension of the embedded entities. The
function ψ also depends on the energy functions
parameters θψ = {A, B,C,u} that we omit for
legibility. RESCAL (Nickel et al., 2011) uses a bi-
linear tensor product to gauge the compatibility of
the two entities, whereas in the Selectional Pref-
erences model only the predisposition of an entity
to appear as the subject or object of a relation is
captured.

Negative Sampling

The number of entities being very large, the parti-
tion function of equation (2) cannot be efficiently
computed. To avoid the summation over the set of
entities, we follow Marcheggiani and Titov (2016)
and use negative sampling (Mikolov et al., 2013):
instead of training a softmax classifier, we train a
discriminator which tries to recognize real triplets
(D = 1) from fake ones (D = 0):

p(D = 1 | e1, e2, r) = σ (ψ(e1, r, e2))

where σ(x) = 1/(1 + exp(−x)) is the sigmoid
function. This model is then trained by generating
negative entities for each position and optimizing
the negative log likelihood:

LLP = E
(e1,e2,s)∼χ
r∼fPCNN(s)

[
− 2 log σ (ψ(e1, r, e2))

−
k∑
j=1

E
e′∼E

[
log σ

(
−ψ(e1, r, e

′)
)]

−
k∑
j=1

E
e′∼E

[
log σ

(
−ψ(e′, r, e2)

)] ]
(3)

This loss is defined over the data distribution χ,
i.e. the samples (e1, e2, s) follow a uniform distri-
bution over sentences containing two entities. The
distribution of the relation r for the sentence s is
then given by the classifier fPCNN(s), which cor-
responds to the

∑
r p(r | s) in equation (1). Fol-

lowing standard practice, during training, the ex-
pectation on negative entities is approximated by
sampling k random entities following the empiri-
cal entity distribution E for each position.



3.3 RelDist losses
Training the classifier through equation (3) alone
is very unstable and dependent on precise hyper-
parameter tuning. More precisely, according to
our early experiments, the training process usu-
ally collapses into one of two regimes: (P1) The
classifier is very uncertain about which relation is
expressed and outputs a relation following a uni-
form distribution ; (P2) All sentences are classi-
fied as conveying the same relation. In both cases,
the link predictor can do a good job minimizing
LLP by ignoring the output of the classifier, simply
exploiting entities co-occurrences. To overcome
these pitfalls, we developed two additional losses,
that we now describe.

Skewness. Firstly, to encourage the classifier to
be confident in its output, we minimize the en-
tropy of the predicted relation distribution. This
addresses P1 by forcing the classifier toward out-
putting one-hot vectors for a given sentence using
the following loss:

LS = E(e1,e2,s)∼χ [H(R | e1, e2, s)] (4)

where R is the random variable corresponding to
the predicted relation. Following our first inde-
pendence hypothesis, the entropy of equation (4)
is equivalent to H(R | s).

Uniformity. Secondly, to ensure that the clas-
sifier predicts several relations, we minimize the
KL-divergence between the prior p(R) and the
uniform distribution U , that is:

LKL = DKL(p(R) ‖U) (5)

Note that contrary to LS, in order to have a good
approximation of p(R), the loss LKL measures the
un-conditionnal distribution over R, i.e. the dis-
tribution of predicted relations over all sentences.
This addresses P2 by forcing the classifier toward
predicting each class equally often over a set of
sentences.

To satisfactorily and jointly train the link pre-
dictor and the classifier, we use the two losses at
the same time, resulting in the final loss:

L = LLP + αLS + βLKL (6)

where α and β are both positive hyper-parameters.
All three losses are defined over the real data

distribution, but in practice they are approximated
at the level of a mini-batch. First, both LLP and LS

can be computed for each sample independently.
To optimize LKL however, we need to estimate
p(R) at the mini-batch level, and maximize the en-
tropy of the mean predicted relation. Formally, let
si for i = 1, . . . , B be the i-th sentence in a batch
of size B, we approximate LKL as:

∑
r

(
B∑
i=1

fPCNN(r; si)

B

)
log

(
B∑
i=1

fPCNN(r; si)

B

)

Learning We optimize the empirical estimation
of (6), learning the PCNN parameters and word
embeddings θPCNN as well as the link predictor pa-
rameters and entity embeddings θψ jointly.

Comparison to VAE When computing the loss
of the VAE model (Marcheggiani and Titov,
2016), aside from the reconstruction term LLP, the
following regularization term is derived:

LVAEreg = E(e1,e2,s)∼χ [−H(R | e1, e2, s)]

This term results from the KL between
p(R | e1, e2, s) and the uniform distribution.
Its purpose is to prevent the classifier from always
predicting the same relation, i.e. it has the same
purpose as our uniformity loss LKL. However
its expression is equivalent to −LS, and indeed,
minimizing the opposite of our skewness loss
increases the entropy of the classifier output,
addressing P2. Yet, using LVAEreg = −LS alone,
draws the classifier into the other pitfall P1. This
causes a drop in performance, as we will show
experimentally.

4 Experiments

4.1 Datasets
To evaluate our model we use labeled datasets, the
labels being used for validation2 and evaluation.
The first dataset is the one of Marcheggiani and
Titov (2016), which is similar to the one used in
Yao et al. (2011). This dataset was built through
distant supervision (Mintz et al., 2009) by align-
ing sentences from the New York Times corpus
(NYT, Sandhaus, 2008) with Freebase (FB, Bol-
lacker et al., 2008) triplets. Several sentences were
filtered out based on features like the length of the
dependency path between the two entities, result-
ing in 2 million sentences with only 41,000 (2%)
of them labeled with one of 262 possible relations.
20% of the labeled sentences were set aside for

2As in other unsupervised RE papers.



validation, the remaining 80% are used to compute
the final results.

We also extracted two datasets from T-REx (El-
sahar et al., 2017) which was built as an alignment
of Wikipedia with Wikidata (Vrandečić, 2012).
We only consider triplets where both entities ap-
pear in the same sentence. We built the first dataset
DS by extracting all triplets of T-REx where the
two entities are linked by a relation in Wikidata.
This is the usual distant supervision method. It re-
sulted in 1189 relations and nearly 12 million sen-
tences, all of them labeled with a relation.

In Wikidata, each relation is annotated with
a list of associated surface forms, for example
“shares border with” can be conveyed by “bor-
ders”, “adjacent to”, “next to”, etc. The second
dataset we built, SPO, only contains the sentence
where a surface form of the relation also appears,
resulting in 763,000 samples (6% of the unfiltered)
and 615 relations. This dataset still contains some
misalignment, but should nevertheless be easier
for models to extract the correct semantic relation.

4.2 Baseline and Model

We compare our model with two state-of-the-art
approaches, two generative rel-LDA models of
Yao et al. (2011) and the VAE model of Marcheg-
giani and Titov (2016).

The two rel-LDA models only differ by the
number of features considered. We use the 8
features listed in Marcheggiani and Titov (2016).
Rel-LDA uses the first 3 simplest features defined
in their paper, while rel-LDA1 is trained by itera-
tively adding more features until all 8 are used.

To assess our two main contributions individu-
ally, we evaluate the PCNN classifier and our addi-
tional losses separately. More precisely, we study
the effect of the RelDist losses by looking at the
differences between models optimizingLLP−αLS
and the ones optimizing LLP + αLS + βLKL with
LLP being either computed using the relation clas-
sifier of Marcheggiani and Titov (2016) or our
PCNN. We thus have four models: March−LS
(which corresponds to the model of Marcheggiani
and Titov (2016)), March+LS +LKL, PCNN−LS
and PCNN+LS + LKL. Secondly, we study the
effect of the relation classifier by comparing the
feature-based classifier and the PCNN trained with
the same losses.

All models are trained with 10 relation classes,
which, while lower than the number of true re-

lations, allows to compare faithfully the models
since the distribution of gold relations is very un-
balanced. For feature-based models, the size of the
features domain range from 1 to 10 million val-
ues depending on the dataset. We train our models
with Adam using L2 regularization on all param-
eters. To have a good estimation of p(R) in the
computation of LKL, we use a batch size of 100.
Words embeddings are of size 50, entities embed-
dings of size m = 10. We sample k = 5 negative
samples to estimate LLP. Lastly, we set α = 0.01
and β = 0.02. All three datasets come with a vali-
dation set, and following (Marcheggiani and Titov,
2016), we used it for cross-validation to optimize
the B3F1 (described below).

4.3 Evaluation metrics
We used the B3 metric used in Yao et al. (2011)
and Marcheggiani and Titov (2016), and comple-
mented it with two more metrics commonly seen
in clustering task evaluation: V-measure (Rosen-
berg and Hirschberg, 2007) and ARI (Hubert and
Arabie, 1985), allowing us to capture the charac-
teristics of each approach more in detail.

To clearly describe the different metrics, we
propose a common probabilistic formulation of
those (in practice, they are estimated on the valida-
tion and test sets), and use the following notations.
Let X (or Y ) be a random variable corresponding
to a sentence. We denote c(X) the predicted clus-
ter of X and g(X) its conveyed gold relation.

B-cubed. The first metric we compute is a gen-
eralization of F1 for clustering tasks called B3

(Bagga and Baldwin, 1998). The B3 precision and
recall are defined as follows:

B3 Precision = E
X,Y

P (g(X) = g(Y ) | c(X) = c(Y ))

B3 Recall = E
X,Y

P (c(X) = c(Y ) | g(X) = g(Y ))

As precision and recall can be trivially maximized
by putting each sample in its own cluster or by
clustering all samples into a single class, the main
metric B3 F1 is defined as the harmonic mean of
precision and recall.

V-measure. We also consider an entropy-based
metric (Rosenberg and Hirschberg, 2007); this
metric is defined by the homogeneity and com-
pleteness, which are akin to B3 precision and re-
call, but rely on conditional entropy:

Homogeneity = 1−H (c(X) | g(X)) /H (c(X))
Completeness = 1−H (g(X) | c(X)) /H (g(X))



Dataset
Model B3 V-measure

ARI
Classifier Reg. F1 Prec. Rec. F1 Hom. Comp.

NYT+FB

rel-LDA 29.1 24.8 35.2 30.0 26.1 35.1 13.3
rel-LDA1 36.9 30.4 47.0 37.4 31.9 45.1 24.2

March. −LS 35.2 23.8 67.1 27.0 18.6 49.6 18.7
PCNN −LS 27.6 24.3 31.9 24.7 21.2 29.6 15.7
March. LS + LKL 37.5 31.1 47.4 38.7 32.6 47.8 27.6
PCNN LS + LKL 39.4 32.2 50.7 38.3 32.2 47.2 33.8

T-REx SPO

rel-LDA 11.9 10.2 14.1 5.9 4.9 7.4 3.9
rel-LDA1 18.5 14.3 26.1 19.4 16.1 24.5 8.6

March. −LS 24.8 20.6 31.3 23.6 19.1 30.6 12.6
PCNN −LS 25.3 19.2 37.0 23.1 18.1 31.9 10.8
March. LS + LKL 29.5 22.7 42.0 34.8 28.4 45.1 20.3
PCNN LS + LKL 36.3 28.4 50.3 41.4 33.7 53.6 21.3

T-REx DS

rel-LDA 9.7 6.8 17.0 8.3 6.6 11.4 2.2
rel-LDA1 12.7 8.3 26.6 17.0 13.3 23.5 3.4

March. −LS 9.0 6.4 15.5 5.7 4.5 7.9 1.9
PCNN −LS 12.2 8.6 21.1 12.9 10.1 18.0 2.9
March. LS + LKL 19.5 13.3 36.7 30.6 24.1 42.1 11.5
PCNN LS + LKL 19.7 14.0 33.4 26.6 20.8 36.8 9.4

Table 1: Results (percentage) on our three datasets. The rel-LDA and rel-LDA1 models come from Yao et al.
(2011). The model of Marcheggiani and Titov (2016) is March −LS.

As B3, the V-measure is summarized by the F1
value. Compared to B3, the V-measure penalizes
small impurities in a relatively “pure” cluster more
harshly than in less pure ones. Symmetrically, it
penalizes more a degradation of a well clustered
relation than of a less well clustered one.

Adjusted Rand Index. Finally, the Rand Index
is defined as the probability that cluster and gold
assignments are compatible:

RI = E
X,Y

[P (c(X) = c(Y )⇔ g(X) = g(Y ))]

The Adjusted Rand Index (ARI, Hubert and Ara-
bie, 1985) is a normalization of the Rand Index
such that a random assignment has an ARI of 0,
and the maximum is 1. Compared to the previ-
ous metrics, ARI will be less sensitive to a dis-
crepancy between precision/homogeneity and re-
call/completeness since it is not an harmonic mean
of both.

4.4 Results
The results reported in Table 1 are the average test
scores of three runs on the NYT+FB and T-REx
SPO datasets, using different random initialization
of the parameters – in practice the variance was
low enough so that reported results can be ana-
lyzed. We observe that regardless of the model
and metrics, the highest measures are obtained
on T-REx SPO, then NYT+FB and finally T-REx
DS. This was to be expected, since T-REx SPO

was built to be easy, and hard-to-process sentences
were filtered out of NYT+FB (Yao et al., 2011;
Marcheggiani and Titov, 2016). We also observe
that main metrics agree in general (B3, V-measure
and ARI) in most cases. Performing a PCA on
the measures, we observed that V-measure forms
a nearly-orthogonal axis to B3, and to lesser extent
ARI. Hence we can focus on B3 and V-measure in
our analysis.

We first measure the benefit of our RelDist
losses: on all datasets and metrics, the two models
using +LS + LKL are systematically better than
the ones using −LS alone: (1) The PCNN models
consistently gain between 7 and 11 points in B3

F1 from these additional losses; (2) The feature-
based classifier benefits from the RelDist losses to
a lesser extent, except on the T-REx DS dataset
on which the March−LS model without the RelD-
ist losses completely collapses – we hypothesize
that this dataset is too hard for the model given the
number of parameters to estimate.

We now restrict to discriminative models based
on +LS +LKL. We note that both (March/PCNN)
exhibit better performances than generative ones
(Rel-LDA, Rel-LDA1) with a difference ranging
from 2.5/0.6 (NYT, for March/PCNN) to 11/17.8
(on SPO). However, the advantage of PCNN over
feature-based classifier is not completely clear.
While the PCNN version has a systematically bet-
ter B3 F1 on all datasets (∆ of 0.2/1.9/6.8 respec-
tively for DS/NYT/SPO), the V-measure decreases
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e1 located in e2 (16.4%)
e1 instance of e2 (15.0%)
e1 in country e2 (9.6%)
e2 instance of e1 (7.4%)
e1 shares border e2 (4.5%)
e2 shares border e1 (4.5%)
e2 located in e1 (4.4%)
e2 in country e1 (3.6%)
e1 cast member of e2 (2.7%)
e1 capital of e2 (1.6%)
e1 director of e2 (1.4%)
e1 has child e2 (1.2%)
e2 has child e1 (1.0%)
e1 member of e2 (0.9%)
e2 capital of e1 (0.9%)

rel-LDA1 March.− LS March. + LS + LKL PCNN + LS + LKL

Figure 3: Normalized contingency tables for the TREx SPO dataset. Each of the 10 columns corresponds to a
predicted relation cluster, which were sorted to ease comparison. The rows identify Wikidata relations sorted by
frequency in the TREx SPO corpus. The area of each square is proportional to the number of sentences in the
cell. The matrix was normalized so that each row sum to 1, thus it is more akin to a B3 per-item recall than a true
contingency table.

by 0.4/4.0 on respectively NYT/DS, and ARI by
2.1 on DS. As B3 F1 was used for validation, this
shows that the PCNN models overfit this metric by
polluting relatively clean clusters with unrelated
sentences or degrades well clustered gold relations
by splitting them within two clusters.

4.5 Qualitative Analysis

Since all the metrics agree on the SPO dataset, we
plot the contingency tables of our models in Fig-
ure 3. Each row is labeled with the gold Wiki-
data relation extracted through distant supervision.
Since relations are generally not symmetric, each
Wikidata relation appears twice in the table, once
for each disposition of the entities. This is partic-
ularly problematic with symmetric relations like
“shares border” which are two different gold rela-
tions that actually convey the same semantic.

To interpret Figure 3, we have to see whether a
predicted cluster (column) contains different gold
relations – paying attention to the fact that the
most important gold relations are listed in the top
rows (the top 5 relations account for 50% of sen-
tences). The first thing to notice is that the con-
tingency tables of both models using our RelD-
ist losses are sparser (for each columnn), which
means that our models better separate relations
from each other. We observe that March−LS is
affected by the pitfall P1 (uniform distribution)
for many gold clusters. The −LS loss forces the
classifier to be uncertain about which relation is
expressed, translating into a dense contingency ta-
ble and resulting in poor performances. The Rel-
LDA1 model is even worse, and fails to identify
clear clusters, showing the limitations of a purely

generative approach that might focus on clusters
not linked with any relation.

Focusing on our proposed model, PCNN+LS +
LKL (rightmost figure), we looked at two differ-
ent mistakes. The first is a gold cluster divided in
two (low recall). When looking at clusters 0 and
1, we did not find any recognizable pattern. More-
over, the corresponding link predictor parameters
are very similar. This seems to be a limitation of
the uniform loss: splitting a large cluster in two
may improve LKL but worsen all the evaluation
metrics. The model is then penalized by the fact
that it lost one slot to transmit information be-
tween the classifier and the link predictor. The
second type of mistake is when a predicted clus-
ter corresponds to two gold ones (low precision).
Here, most of the mistakes seem understandable:
"shares border" is symmetric (cluster 7), “located
in” and “in country” (cluster 8) or “cast member”
and “director of” (cluster 9) are clearly related.

5 Conclusion

In this paper, we show that discriminative RE
models can be trained efficiently on unlabeled
datasets by defining two losses (RelDist) on the re-
lation distribution, that encourage the prediction to
be skewed for a sentence, while being uniform for
a set of sentences. In particular, we were able to
successfully train a deep neural network classifier.
We demonstrate the effectiveness of our RelDist
losses on three datasets and showcase its effect on
cluster purity.
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