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Abstract.

We focus on a brain-reading task which consists in discovering the word
a person is thinking of from an fMRI image of his brain. Previous studies
have demonstrated the feasibility of this brain-reading task through the
design of what has been called a semantic space, i.e. a continuous low di-
mensional space reflecting the similarity between words. Up to now better
results are achieved when carefully designing the semantic space by hand,
which limits the generality of the method. We propose to automatically
design several semantic space from linguistic resources and to combine
them in a principled way so as to reach results as accurate as when using
a manually built semantic space.

1 Introduction

Neuroimaging gained much interest in the last decade in many fields ranging from
philosophy and psychology to neuroscience and artificial intelligence. Among
brain imaging techniques, functional Magnetic Resonance Imaging (fMRI) has
become a primary tool to detect mental activity with a great spatial resolution
[1]: an fMRI image contains approximately 20,000 voxels (volumantic pixels)
that are activated when a human performs a particular cognitive function (e.g.,
reading, mental imagery) [2]. With fMRI, it became possible to associate brain
areas with cognitive states: specific conceptual words and pictures trigger specific
activity in some parts of the brain and studies began to focus on the extraction
of meaningful brain activation patterns [3, 4].

A pioneering work [5] showed that it was possible to predict the brain acti-
vation pattern (a fMRI image) in response to a given conceptual stimulus (e.g.
a word). Reciprocally [6] demonstrated on the same dataset the feasibility of
identifying the concept from the brain activation pattern (fMRI image). The
proposed approaches for these two reciprocal tasks share the definition of a se-
mantic (or representation) space for representing the concepts. The underlying
idea of using an intermediate semantic space is that it allows casting the problem
of inferring the concept from the fMRI (and vice versa) as a standard regression
problem from the fMRI voxel space to the semantic space (and vice versa). Im-
portantly if the representation space is designed in such a way that one can get
the representation of any new word, such a strategy naturally allows to recognize
concepts from fMRI even if there was no training fMRI image for this word. In-
deed this may be done in two steps: first compute a point in the semantic space
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Z = {zi}i=1,...,N , zi 2 Rp be the collection of associated word semantic rep-
resentations (N words, namely one for each image represented in p dimensions).
The ridge regressor consists in learning � 2 Rd⇥p coe�cients that maps e�-
ciently from the voxel space to the semantic space. As far as the multitask
LASSO (MTL) is concerned, we assume that we have a K-task, corresponding
to K di↵erent semantic spaces (all being p-dimension). Thus, for each image,
we have K semantic representations associated to targeted word and we dis-

tinguish K regression problems: each semantic representation z
(k)
i is estimated
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We adopted a blockwise coordinate descent algorithm proposed in [15] to solve
the multi-task regression. The block regularization corresponds to an hypothesis
that makes sense: for each voxel, we try to vanish all coe�cient associated to
the tasks. Either a voxel is useful or not, but it is unlikely that it is useful for
only a subset of tasks.

Once we get all �(k), we still have to build a decision criterion to choose the
word to be associated to the fMRI. We map each word w in the kth semantic
space using the ⌦(k) function, thus we get ⌦(k)(w) 2 Rp. In parallel, we obtain K
semantic representation associated to the fMRI x using �(k) coe�cients. Then
we compute the cosine similarity in the intermediate space and we merge the
results using a linear combination:
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Obviously, the word with the highest similarity to an fMRI is chosen.

4 Experiments and Discussion

4.1 fMRI dataset

We get the fMRI dataset from [7]. fMRI data was collected from nine partici-
pants while they react to a double stimuli : for each concept, they were shown
a line-drawing, as well as a text label. Concrete concepts are divided into 12 se-
mantic categories (i.e., mammals, body parts, buildings, building parts, clothes,
furniture, insects, kitchen utensils, miscellaneous functional artefacts, work tools,
vegetables, and vehicles) and 5 exemples of each are provided leading to a 60
class problem. The whole protocole is described in depth in [7], and at the
end, we get 20, 000 voxels representing the cortex activity. In our experiments,
we often consider a subset voxels (with a size ranging from 500 to 10000), our
selection procedure is based on the stability criterion also used in [7].
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Fig. 1: Brain-reading processing chain

using the regression model and an input fMRI image and second, find the word
whose representation is the closest to this point. This is the zero-shot learning
setting which was studied in [6].

In preliminary works the semantic space was defined by hand. [6] manually
designed a 218 dimensional representation space where a concept representation
is defined according to the answers to 218 questions such as ’is it manmade?’
or ’can you hold it?’. Such semantic space were designed for a particular set of
concepts. Later on, to extend these methods to deal with a larger number of
concepts, researchers have investigated exploiting lexical and corpus resources
to automatically design a universal and accurate semantic space. For instance,
[6] built a 5000 dimensional semantic space from the Google n-gram corpus,
[7] found that co-occurrences counts with very high frequency words were an
informative representation of words for semantic tasks, [8] examined various se-
mantic feature representations of concrete nouns derived from 50 million English-
language webpages...

This work deals with the problem of the automatic design of a semantic
space for [6]’s task, i.e. predicting the concept from the fMRI image in the
zero-shot learning setting for which best performing systems today rely on a
manually designed semantic space which is dedicated to the limited set of con-
cepts to be recognized. Since previous studies have shown the superiority of
manually designed semantic space we propose to combine multiple and diverse
semantic spaces, either automatically learned from huge corpora, following re-
cent works in the machine learning and representation learning community [9],
or designed from various linguistic resources (e.g. WordNet [12]). To enable
accurate exploitation of these semantic spaces, we propose to use an effective
blockwise regularized learning algorithm [10] that prevents overfitting and focus
on relevant informations contained in the fMRI images.

2 Learning Models for Brain Decoding

The idea we propose in this study consists in combining multiple semantic spaces,
some of them being designed automatically using linguistic resources while others
are learnt using representation learning ideas such as the one in [9]. Our system
for inferring a concept from an fMRI image is illustrated in figure 2. It relies on
two mapping functions: Ω maps a single word w in a continuous p-dimensional



space so that Ω(w) = z ∈ Rp. We refer to this space as a semantic space. Ω is
built using external resources [9, 11] and we give detail in section 3 about the
considered representation spaces. The second multilinear mapping function is β
that enables us to make the link between the fMRI x ∈ Rd (an image made of
d voxels) and the word semantic representation z ∈ Rp. First, we consider the
simple strategy of learning independently multiple ridge regressions: this will be
the baseline for exploiting multiple semantic spaces in our experiments. Next we
investigated a more advanced multitask strategy using the multitask blockwise
regularized LASSO from [10]. The idea is to regularize jointly all regression
models to take into account globally the relevance of every voxel with respect
to the task. We explain here this strategy. Note that we learn one independent
model for each subject.

Let X = {xi}i=1,...,N , xi ∈ Rd be the collection of fMRI for a subject and
Z = {zi}i=1,...,N , zi ∈ Rp be the collection of associated word semantic repre-
sentations. The ridge regressor (RR) consists in learning β ∈ Rd×p coefficients
that map efficiently from the voxel space to the semantic space. As far as the
multitask LASSO (MTL) is concerned, the global blockwise regularized problem
is formulated as:
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The resulting β matrix will have entire rows that vanish during training so as
to focus only on relevant voxels. We adopted a blockwise coordinate descent
algorithm proposed in [10] to solve the multitask regression.

After training K models β(k), corresponding to K different semantic spaces,
we still have to build a decision criterion to choose the word to be associated to
the fMRI. We map each word w in the kth semantic space using the Ω(k) function,
thus we get Ω(k)(w) ∈ Rp. In parallel, we obtain K semantic representations
associated to the fMRI x using β(k) coefficients. Then we compute the cosine
similarity in the intermediate space and we merge the results using a linear
combination:
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Obviously, the word with the highest similarity to an fMRI is chosen.

3 Experiments and Discussion

3.1 fMRI Dataset and Task

The fMRI data was collected from nine participants while they react to a double
stimuli: a line-drawing as well as a text label corresponding to a particular
concept [5]. There were 60 concepts (classes) belonging to 12 semantic categories
(i.e., mammals, body parts, buildings, clothes, furniture, insects...). The dataset



includes 5 examples per class. Every fMRI image consists in about 20, 000 voxels
representing the cortex activity. Following [5] we eventually considered in our
experiments subsets of 500 to 10000 voxels using the same selection procedure
based on a stability criterion.

We investigated the zero-shot learning setting defined in [6]. Experiments
consist in using 58 classes for training the system and 2 classes for testing. As a
consequence the classes from the test set are completely unknown.

3.2 Word Semantic Features

We exploited three approaches for designing a semantic space which we describe
now.

WordNet based semantic space (WN) WordNet provides easy ways for design-
ing a semantic space. Actually this lexicon is organized as a hierarchical tree
with concepts and subconcepts. As a consequence, it is possible to compute a
path in the tree between two concepts (words). Intuitively the smaller this path
the closer are the two concepts [12]. Based on such a metric one can repre-
sent a given word in a fixed p-dimensional space by computing its distance to
a given set of p representative words, we considered the most common words in
Wikipedia. We will call such a semantic space WNpath. Alternative metrics have
been proposed in the literature that lead to other semantic spaces: one can prefer
to measure the closeness of two concepts with respect to their closest common
ancestor [11] (we will note the corresponding semantic space WNanc) and [13]
defines a criterion inspired from mutual information, comparing the weights of
subtrees associated to each concept (this semantic space will be denoted WNmi).

Word2Vec semantic space (W2V) Representation learning has emerged in the
recent years as a key research field in the machine learning community. Word2Vec
is an efficient tool that learns continuous and dense representations of words
from text data [9]. It is a supervised learning approach based on neural net-
works which learns to encode in its hidden layer a vector representation which
captures syntactic and semantic patterns of words.

Human218 semantic space (H218) The last semantic space we considered is a
baseline noted H218. As explained before it is a manually designed space which
has been obtained from crowdsourcing [6]. For each concept under consideration
a 218 dimensional representation is defined according to the answers from a set
of volunteers to 218 questions like is it manmade? or can you hold it?.

3.3 Results and Discussion

A preliminary experiment consists in optimizing the semantic space dimension
p using a large set of voxels (we fix d = 2000). Considering all results from
Fig 2 one sees a dimension p = 150 offers a good trade-off between complexity
and accuracy: we will keep this value for further experiments. Also, given a
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Fig. 2: Accuracy (zero-shot learning) wrt the semantic space dimension, for
various semantic spaces (W2V, WN, ...) and for the two training strategies
(MTL = Multitask LASSO/ Ridge = Ridge Regression)

particular semantic space, we notice that MTL (multitask LASSO) systemati-
cally overcomes Ridge regression which validates our regularization strategy for
identifying and neglecting unnecessary voxels. Hence we will focus on this model
in further experiments.

Then, we performed a combined experiment that studies the impact of voxel
preprocessing (we reduce the voxel space using the stability criterion proposed
in [5]) as well as the interest of mixing different semantic spaces. All results are
provided in Fig 3. As far as the voxel space size is concerned, best results are
obtained for a dimension of 2000. In particular it may be seen that although the
MTL procedure is designed to select relevant voxels it is not fully able to deal
efficiently with large dimensional noisy data such as fMRI images and requires
a preliminary preprocessing.

Our most important result lies in the overall performance on this difficult
brain-reading task: up to now, state-of-the-art results relied on Human218
(H218) resources [6], which is hand-made for this task and questions the ability to
generalize the process to a larger vocabulary. We demonstrate here the interest
of combining different lexical and learnt resources to outperform this strategy.
While H218 reaches an accuracy of 80.3% (last column of Fig. 3), being far above
the best single model (WNanc) that reaches 76.2%, it is outperformed by our
combination schemes. Combining 2 resources provides a significative improve-
ment to catch up with H218: W2V + WNanc model reaches 80.3% accuracy.
Adding a third resource (WNpath) we reach 80.7% accuracy. The comparison
of various combinations confirms our assumption: it is more relevant to combine
heterogeneous spaces like W2V and WN than to work with a single resource.

4 Conclusion

Predicting a concept stimulus from a fMRI image is a hard task which is tra-
ditionally tackled through the definition of a manual semantic space and the
learning of a regression model. While this approach has been shown effective for
a limited set of concepts the manual design of the semantic space prevents the
approach to be extended to a larger number of concepts. We tackled the prob-
lem by relying on multiple semantic space automatically designed from resources
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Fig. 3: Accuracy (zero-shot learning) with Multitask LASSO wrt the voxel space
dimension and for various semantic space combinations.

and trained from large corpora. Given the dimension of fMRI, it is necessary
to implement a robust learning strategy: the multitask LASSO we designed
allows us to efficiently select relevant voxels. MTL, combined with Word2Vec
and WordNet, catches up with the state-of-the-art performance in brain-reading
relying on hand-made resource. It is a promising step towards more advanced
brain-reading tasks.
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