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1- MLIA, Sorbonne Université, CNRS, LIP6, F-75005 Paris, France

2 - Renault, DEA-IR, Technocentre, 1 avenue du Golf 78084 Guyancourt , France

Abstract. We propose a new neural architecture to predict time se-
ries, each depending on multiple underlying factors. Our method typically
applies to spatio-temporal prediction of missing series where only certain
locations and times are observed. The model is based on an encoder-
decoder structure where the multiple factors are projected into a latent
space which is learned by combining the latent factors coming from mul-
tiple observed series. We show on several spatio-temporal datasets that
our method is able to predict missing series, not only for observed factors
values, but also for new ones (e.g new locations or times).

1 Introduction

Modeling time series is an important issue in machine learning with many con-
crete applications that received a lot of attention during the last decades. Usu-
ally, the latter problem is handled mainly as an imputation problem (i.e., com-
pleting missing values in an observed series as in [1]) or as a forecasting one
(i.e., being able to predict the ”future” of any new series as in [2]). We focus
on a different task: predict missing times series conditioned on latent factors of
variations. More precisely, we consider the problem where time series are organ-
ised among two different factors of variation1. For instance, such a setting can
correspond to spatio-temporal time series where each series is associated with a
particular location (factor 1) and has been captured for a particular day (factor
2). In this context, it is usual to have no observations for some combinations
of factors values particularly for acquisition cost reasons. A critical problem is
thus to be able to generate the missing series based on the observed ones.

The main difficulty in this setting is to learn from observations the influence
of each factor in the time series. This problem is usually denominated as the
disentanglement problem in the literature and has been studied in different ap-
plication domains, and particularly in computer vision. For instance, multiple
models have been proposed to generate images based on class and view [3].

Recent works on disentanglement and generation are using two techniques :
Variational AutoEncoder (VAEs, [4, 5]) and Generative Adversarial Network
(GANs, [6]). More recently, disentanglement techniques have been extended
to video and speech where the temporal component is one of the considered
factors. For instance, [7] presents a VAE-based generative model, that explicitly
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1Our method can easily apply to more than two factors.



learns to disentangle content and dynamic to perform ”feature sweeping” and
generates speech with a different voice than the one of the original speaker.
Using adversarial training, [8] and [9] predict the next frame of a video by using
different auto-encoders architectures and disentangling dynamics and content.
Also, [10] used Kalman filters in the latent space of embeddings to generate
videos of a physical system such as a pendulum or a bouncing ball.

In contrast, our approach is focused on data of a different nature, i.e., classi-
cal time series, and we propose to study a different setting. Indeed, we tackle two
tasks: i) the missing series prediction problem where missing series correspond
to unobserved series for known values of the two factors (e.g., for known loca-
tions, and past days) and the ii) new series prediction problem where one aims
at predicting series for unknown factor values (e.g., for new locations and/or new
days) based on the observation of a single series. To this end, we propose firstly a
novel neural model where each series can be predicted based on embeddings rep-
resenting the different factors. Secondly, we extend this model to consider new
and unobserved factor values by completing our architecture with an encoder
able to compute a factor’s embedding just based on the only observation of any
new single time series. We demonstrate that our model can successfully predict
missing time series on three different datasets, and achieve good performance in
comparison to oracle and non-oracle baseline methods.

2 Notations and Tasks

We consider the problem where one has access to a set of temporal series xi,j
with i and j corresponding to the values of two different factors of variations
characterising the observed series. When considering for instance a city subway
network, xi,j corresponds to the amount of ticket validations each hour during
day i in a particular subway station j. For sake of simplicity, each temporal
series will be of fixed size T such that xi,j ∈ RT . We also consider that training
series are provided for specific combinations of i ∈ [1..N ] and j ∈ [1..M ] as
illustrated in Figure 1 (left). The observed series are indexed through a mask m
such that mi,j = 1 if xi,j is observed (and is in the training set), and mi,j = 0
if xi,j is not observed2. We consider two different tasks:

Missing Series Prediction: The objective of this task is to predict the values
of the temporal series that are not in the training set. This task can be seen
as a matrix completion problem where missing entries are temporal series. It
typically applies to applications, where for cost reasons, time series have not
been collected on all combinations of factors.

New Series Prediction: The objective of this task is to predict series for new
factor values i.e., new values of i or j that do not appear in the observed set of
series. It corresponds to a setting where one observes a new series3 xî,j such that

j ∈ [1..M ] but where î /∈ [1..N ]. For instance a series for a new subway station

2Note that in the experimental section, this split will also include a validation set for hyper-
parameters tuning.

3It also applies to the problem where xi,ĵ is the newly observed series.



that has never been observed in the past. In this case, the goal is to predict all
the missing series for that particular factor’s value î, i.e., all the xî,k for k 6= j.

Matrix completion New context

Framework to learn disentangled
factors

Fig. 1: [Left] Our dataset with the different splits corresponding to our 2 tasks.
[Right] Architecture to learn disentangled factors.

3 Model

Both settings can be solved if we are able to capture from the training set
the influence of each factor i and j in xi,j . We now detail how we propose to
achieve this disentanglement for both instances of the problems described above.
The principle of our approach is to compute a representation of each factor of
variation in a latent space, and to use these representations to infer any series
values. Let us consider two latent spaces R`1 and R`2 of size `1 and `2. Each
value of the 1st factor i (respectively of the 2nd factor j) will be represented by

a vector z
(1)
i (respectively z

(2)
j ). Based on these representations, the series xi,j

will be inferred through a decoder function d : R`1 × R`2 → RT . Any series xi,j

can then be computed through d(z
(1)
i , z

(2)
j ).

Let us consider e1 : RT → R`1 a function that, given any time series is able
to compute the representation of the first factor of this series i.e., given a series

xi,j , e1(xi,j) computes the representation z
(1)
i . Similarly, e2 : RT → R`2 will take

in charge the second factor such that e2(xi,j) computes z
(2)
j . Given a new series

xî,ĵ , considering that there exists two series xî,k and xk′,ĵ that are observed, xî,ĵ
can then be predicted through xî,ĵ = d(e1(xî,k), e2(xk′,ĵ)). The knowledge of d,
e1 and e2 allow us to predict any new series provided that at least another series
is observed for each factor values î and ĵ. Learning such a model enable us to
solve the two particular tasks presented above.

Learning through disentanglement

Learning d, e1 and e2 is not trivial and typically cannot be achieved through a
classical auto-encoding loss applied on each individual training series since, in
that case, the model would be unable to disentangle which information comes
from the first factor of variation, and which information comes from the second.
We thus propose to rely on a learning objective that have been proposed in the
disentanglement literature [9]. The principle of the learning method is to min-
imise the loss between a predicted series by using embeddings values computed



Name Description #locations #days

STIF Number of people that enters Paris’s subway using smart cards 298 89

Energy Hourly consumption of energy in the North East of the USA 4 10 1877

NO2 Hourly measurement of NO2 in the air of Madrid 5 24 2669

Table 1: Time series datasets with two explanatory factors

from other series as illustrated in Figure 1 (right).
Let us consider a triplet τ = (xî,ĵ , xî,k, xk′,ĵ) containing only series observed

at train time i.e., mî,ĵ = mî,k = mk′,ĵ = 1. Given this triplet, one can compute
a loss function L(τ, d, e1, e2) = ∆(d(e1(xî,k), e2(xk′,ĵ)), xî,ĵ) where ∆ is a loss
function measuring the distance between the two series, such as mean-squared
error . The final functions d∗, e∗1 and e∗2 are thus obtained by solving:

d∗, e∗1, e
∗
2 = arg min

d,e1,e2

1

|T |
∑

(xî,ĵ ,xî,k,xk′,ĵ)∈T

∆(d(e1(xî,k), e2(xk′,ĵ)), xî,ĵ) (1)

where T is the set of all triplets that can be built from the training set.
When considering that d, e1 and e2 are differentiable parameterised functions
(e.g neural networks), this problem can be solved by classical stochastic gradient
descent techniques.

Inference: At test time, a series xî,ĵ can be predicted through xî,ĵ =
d(e1(xî,k), e2(xk′,ĵ)), provided that some xî,k and xk′,ĵ are observed. However,
it may happen that multiple series xî,k could be observed for different values
of k (and respectively for k′ and xk′,ĵ). In this case, we propose two inference
methods that are compared in the next section:

Series averaging: The predicted series are the average of the series predicted
by using all the combinations of observed xî,k and xk′,ĵ .

Embedding averaging: The predicted series are computed by averaging at the
embedding levels i.e., by averaging the values of e1(xî,k) and e2(xk′,ĵ) on the
observed series, and by using these vectors as inputs to the decoding function d.

4 Experiments

4.1 Dataset

We tested our models on three different datasets. They all consist in daily
measures of some quantity on several locations. The data is aggregated hourly,
giving 24 time steps for each series (T = 24). The first factor corresponds to
the location of the series and the second factor corresponds to the day when
the series was acquired. Table 1 describes the different datasets. These datasets
correspond to very different applications: from public transportation traffic to
energy consumption and air quality measurements. However, they share com-
mon properties: stationarity for week days and specific operating modes for the
week-ends. Each time series value was normalised between 0 and 1 by using the
min/max values after removing the 99.9 percentile to remove outliers.

4https://www.kaggle.com/robikscube/hourly-energy-consumption/
5https://www.kaggle.com/decide-soluciones/air-quality-madrid/

https://www.kaggle.com/robikscube/hourly-energy-consumption/
https://www.kaggle.com/decide-soluciones/air-quality-madrid/


4.2 Baselines and Models

We compare our models to different baselines:

Baseline average (BL avg) This baseline is considered for both tasks. It predicts
xî,ĵ by averaging the observed time series sharing a common factor î or ĵ.

Baseline p-Nearest Neighbour (BL NN(p)) This intuitive approach is dedicated
to the 2nd task. Given xî,k, we aim at predicting all other xî,·. The principle is
to find the p series that are the closest to xî,k from {x·,k}. Let’s define U the set
of indices of these series: {xu,k}u∈U . Then, xî,ĵ is predicted with the average of
the p series {xu,ĵ}u∈U
Oracle p-Nearest Neighbour (Oracle NN(p)) The third baseline is an oracle
since it requires to access the ground truth. xî,ĵ is simply estimated by averaging
its p nearest neighbours in the trainset.
p is a parameter of the baselines we optimise.

For our model, we explore different possibilities to build the functions d, e1
and e2. The decoding function will be either a Multi-Layer Perceptron or a one-
dimensional convolutional neural network. Concerning the encoding function,
we also relied on both MLP and CNN. We also investigate the specific case
where e1 and e2 are matrices of embeddings (i.e., one vector for each possible
factor value) which only applies for the missing series problem since the new
series prediction task needs to be able to compute values for new factors.

Hyper-parameters have been chosen on a validation subset of 20% of the
series; the evaluation has been made on the test set, comprised of another 20%
of the series6.

4.3 Experimental Results

Table 2 presents all results for the first task using the MSE over the predicted
series vs the ground truth. Performances are consistent across the different use
cases: the oracle provides a nearly perfect reconstruction while our proposals
outperform the baselines. In the transductive setting (when using embeddings
matrices), we need to provide to the model exact information on the real day
and location, therefore it always outperforms the inductive framework (where e1
and e2 are not embeddings matrices).

Table 3 illustrates the MSE on the new series prediction task. Our results
are still consistent except for new locations on the Energy and NO2 datasets:
this can be explained by the very low number of locations preventing the model
to capture the relevant information.

5 Conclusion & Perspectives

We have proposed a new approach for predicting time series when the underlying
observations are organised following two factors of variations. This approach ap-

6MLP design counts 1 or 2 layers with 128 or 256 hidden neurons and tanh activation
functions. CNN relies on 32 or 64 filters of size 3, 5 or 7 depending on the dataset. Parameters
are optimised by random search on the validation set. Results are reported on the test set.



STIF Energy NO2

Encoder Decoder
Series
avg

Emb.
avg

Series
avg

Emb.
avg

Series
avg

Emb.
avg

Oracle NN(p) 0.001(p=9) 0.00008 (p=11) 0.0031 (p=5)
BL avg (fact. 1) 0.0179 0.0060 0.0213
BL avg (fact. 2) 0.0121 0.0089 0.0099

Emb MLP 0.0028 0.0020 0.0098
Emb. CNN 0.0053 0.0048 0.0101
MLP MLP 0.0084 0.0084 0.0046 0.0047 0.0106 0.0105
CNN CNN 0.0073 0.0073 0.0060 0.0060 0.0104 0.0105

Table 2: MSE errors for task 1 (matrix completion setting).

STIF Energy NO2

Encoder Decoder
Series
avg

Emb.
avg

Series
avg

Emb.
avg

Series
avg

Emb.
avg

N
e
w

lo
c
. BL NN 0.0123 (p = 150) 0.0081 (p = 3) 0.0107 (p = 5)

BL avg (factor 2) 0.0125 0.0087 0.0112
MLP MLP 0.0059 0.0059 0.0118 0.0118 0.0107 0.0107
CNN CNN 0.0075 0.0076 0.0099 0.102 0.0101 0.0102

N
e
w

d
a
y BL NN 0.0143 (p = 5) 0.093 (p = 900) 0.0207 (p = 60)

BL avg (factor 1) 0.0145 0.0089 0.0210
MLP MLP 0.0063 0.0061 0.0076 0.0076 0.0133 0.0133
CNN CNN 0.0061 0.0059 0.0065 0.0063 0.0129 0.0128

Table 3: MSE errors for task 2: new locations above, new days below.

plies to different types of applications, and particularly to spatio-temporal prob-
lems where series are organised based on locations and schedule. While simple,
our approach offers good performance on the studied datasets, including the
STIF dataset which corresponds to a real-world application. Future extensions
of this method includes dealing with series of variable length, and performing
evaluation on problems with more than two factors of variations.

References

[1] J. Chung, K. Kastner, L. Dinh, K. Goel, A. C. Courville, and Y. Bengio. A recurrent
latent variable model for sequential data. NIPS, 2015.

[2] A. Ziat, E. Delasalles, L. Denoyer, and P. Gallinari. Spatio-temporal neural networks for
space-time series forecasting and relations discovery. ArXiv, abs/1804.08562, 2018.

[3] M. Chen, L. Denoyer, and T.Artières. Multi-view data generation without view supervi-
sion. arXiv, abs/1711.00305, 2017.

[4] D J Rezende, S Mohamed, and D Wierstra. Stochastic Backpropagation and Approximate
Inference in Deep Generative Models. arXiv, abs/1401.4082.

[5] Diederik P. Kingma and Max Welling. Auto-encoding variational bayes. CoRR, 2013.

[6] I. J. Goodfellow, J. Pouget-Abadie, M.i Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. C.
Courville, and Y. Bengio. Generative adversarial nets. In NIPS, 2014.

[7] Y. Li and S. Mandt. A deep generative model for disentangled representations of sequential
data. arXiv, abs/1803.02991, 2018.

[8] R. Villegas, J. Yang, S. Hong, X. Lin, and H. Lee. Decomposing motion and content for
natural video sequence prediction. ArXiv, abs/1706.08033, 2017.

[9] E. Denton and V. Birodkar. Unsupervised learning of disentangled representations from
video. NIPS, 2017.

[10] Fraccaro M., Rezende D. J., Zwols Y., Pritzel A., Eslami S.M.A., and Viola F. Generative
temporal models with spatial memory for partially observed environments. In ICML,
2018.


	Introduction
	Notations and Tasks
	Model
	Experiments
	Dataset
	Baselines and Models
	Experimental Results

	Conclusion & Perspectives

