
Accepted as a Workshop Paper at TS4H@ICLR2024

TIMEFLOW: AN IMPLICIT NEURAL REPRESENTATION
APPROACH FOR CONTINUOUS TIME SERIES MODEL-
ING

Etienne Le Naour* 1,2, Louis Serrano* 1, Léon Migus* 1,3, Yuan Yin1, Ghislain Agoua2

Nicolas Baskiotis1, Patrick Gallinari1,4, Vincent Guigue5

1 Sorbonne Université, CNRS, ISIR, 75005 Paris, France
2 EDF R&D, Palaiseau, France
3 Sorbonne Université, CNRS, Laboratoire Jacques-Louis Lions, 75005 Paris, France
4 Criteo AI Lab, Paris, France
5 AgroParisTech, Palaiseau, France
{louis.serrano, leon.migus, yuan.yin, nicolas.baskiotis, vincent.guigue}@sorbonne-universite.fr
{etienne.le-naour, ghislain.agoua}@edf.fr

ABSTRACT

We introduce a novel modeling approach for time series imputation and fore-
casting, tailored to address the challenges often encountered in real-world data,
such as irregular samples, missing data, or unaligned measurements from mul-
tiple sensors. Our method relies on a continuous-time-dependent model of the
series’ evolution dynamics. It leverages adaptations of conditional, implicit neu-
ral representations for sequential data. A modulation mechanism, driven by a
meta-learning algorithm, allows adaptation to unseen samples and extrapolation
beyond observed time-windows for long-term predictions. The model provides a
highly flexible and unified framework for imputation and forecasting tasks across
a wide range of challenging scenarios. It achieves state-of-the-art performance on
classical benchmarks and outperforms alternative time-continuous models.

1 INTRODUCTION

Time series analysis and modeling are ubiquitous in a wide range of fields, including industry,
climate science and health. The variety, heterogeneity and increasing number of deployed sensors,
raise new challenges when dealing with real-world problems for which current methods often fail.
For example, data are frequently irregularly sampled, contain missing values, or are unaligned when
collected from distributed sensors (Schulz and Stattegger, 1997; Clark and Bjørnstad, 2004). Recent
advancements in deep learning have significantly improved state-of-the-art performance in both data
imputation (Cao et al., 2018; Du et al., 2023) and forecasting tasks (Zeng et al., 2022; Nie et al.,
2022). Many state-of-the-art models, such as transformers, have been primarily designed for dense
and regular grids (Wu et al., 2021; Nie et al., 2022; Du et al., 2023). They struggle to handle irregular
data and often suffer from significant performance degradation (Chen et al., 2001; Kim et al., 2019).

Our objective is to explore alternatives to SOTA transformers able to handle, in a unified frame-
work, imputation and forecasting tasks for irregularly, arbitrarily sampled, and unaligned time series
sources. Time-dependent continuous models (Rasmussen and Williams, 2006; Garnelo et al., 2018;
Rubanova et al., 2019) offer such an alternative. However, until now, their performance has lagged
significantly behind that of models designed for regular discrete grids. A few years ago, implicit
neural representations (INRs) emerged as a powerful tool for representing images as continuous
functions of spatial coordinates (Sitzmann et al., 2020; Tancik et al., 2020) with recent new appli-
cations such as image generation (Dupont et al., 2022) or even modeling dynamical systems (Yin
et al., 2023). A more detailed related content is available in Appendix B.

* Equal contribution

1

Accepted as a Workshop Paper at TS4H@ICLR2024

In this work, we leverage the potential of conditional INR models within a meta-learning approach
to introduce TimeFlow: a unified framework designed for modeling continuous time series and
addressing imputation and forecasting tasks with irregular and unaligned observations. Our key
contributions are the following:

• We propose a novel framework that excels in modeling time series as continuous functions
of time, accepting arbitrary time step inputs, thus enabling the handling of irregular and
unaligned time series for both imputation and forecasting tasks.

• We conducted an extensive comparison with state-of-the-art continuous and discrete mod-
els. It demonstrates that our approach outperforms continuous and discrete SOTA deep
learning approaches for imputation. As for long-term forecasting, it outperforms existing
continuous models both on regular and irregular samples. It is on par with SOTA discrete
models on regularly sampled time series while allowing for a much greater flexibility for
irregular samplings, allowing to cope with situations where discrete models fail.

2 THE TIMEFLOW FRAMEWORK

2.1 PROBLEM SETTING

We aim to develop a unified framework for time series imputation and forecasting that reduces
dependency on a fixed sampling scheme for time series. We introduce the following notations for
both tasks. During training, in the imputation setting, we have access to time series in an observation
set denoted as Tin, which is a subset of the complete time series observation set T . In the forecasting
setting, we observe time series within a limited past time grid, referred to as the ’look-back window’
and denoted as Tin (a subset of T), as well as a future grid, the ’horizon’, denoted as Tout (also a
subset of T). At test time, in both cases, and given an observed subset T ∗

in included in a possibly
new temporal window T ∗, our objective is to infer the time series values within T ∗.

2.2 KEY COMPONENTS

Our framework is articulated around three key components. (i) INR-based time-continuous func-
tions: a time series x is represented by a time-continuous function f : t ∈ R+ → f(t) ∈ Rd that
can be queried at any time t. For that, we employ implicit neural representations (INRs), which are
neural networks capable of learning a parameterized continuous function fθ from discrete data by
minimizing the reconstruction loss between observed data and network’s outputs. (ii) Conditional
INRs with modulations: An INR can represent only one function, whether it’s an image or a time
series. To effectively represent a collection of time series (x(j))j using INRs, we improve their
encoding by incorporating per-sample modulations, which we denote as ψ(j). These modulations
condition the parameters θ of the INRs. We use the notation fθ,ψ(j) to refer to the conditioned INR
with the modulations ψ(j). (iii) Optimization-based encoding: the conditioning modulation pa-
rameters ψ(j) are calculated as a function of codes z(j) that represent the individual sample series.
We acquire these codes z(j) through a meta-learning optimization process using an auto-decoding
strategy. Notably, auto-decoding has been found to be more efficient for this purpose than set en-
coders (Kim et al., 2019). In the following sections, we will elaborate on each component of our
method.

INR-based time-continuous functions. We implement our INR with Fourier features and a feed-
forward network (FFN) with ReLU activations, i.e. for a time coordinate t ∈ T , the output of the
INR fθ is given by fθ(t) = FFN(γ(t)). The Fourier Features γ(·) are a frequency embedding of the
time coordinates used to capture high-frequencies (Tancik et al., 2020; Mildenhall et al., 2021). In
our case, we chose γ(t) := (sin(πt), cos(πt), · · · , sin(2N−1πt), cos(2N−1πt)), withN the number
of fixed frequencies. For an INR with L layers, the output is computed as follows: (i) we get the fre-
quency embedding ϕ0 = γ(t), (ii) we update the hidden states according to ϕl = ReLU(θlϕl−1+bl)
for l = 1, . . . , L, (iii) we project onto the output space fθ(t) = θL+1ϕL + bL+1.

Conditional INRs with modulations. As indicated, sample conditioning of the INR is performed
through modulations of its parameters. In order to adapt rapidly the model to new samples, the con-

2

Accepted as a Workshop Paper at TS4H@ICLR2024

ditioning should rely only on a small number of the INR parameters. This is achieved by modifying
only the biases of the INR through the introduction of an additional bias term ψ

(j)
l for each layer

l, also known as shift modulation. To further limit the versatility of the conditioning, we generate
the instance modulations ψ(j) from compact codes z(j) through a linear hypernetwork h with pa-
rameters w, i.e., ψ(j) = hw(z

(j)). Consequently, the approximation of a time series x(j), denoted
globally as fθ,hw(z(j)), will depend on shared parameters θ and w that are common among all the
INRs involved in modeling the series family and on the code z(j) specific to series x(j). The out-
put of the l-th layer of the modulated INR is given by ϕl = ReLU(θlϕl−1 + bl + ψ

(j)
l), where

ψ
(j)
l = Wlz

(j), and w := (Wl)
L
l=1 are the parameters of the hypernetwork hw. This design enables

gathering information across samples into the common parameters of the INR and hypernetwork,
while the codes contain only specific information about their respective time-series samples. The
architecture is illustrated in Figure 1 (Appendix C).

Optimization-based encoding. We condition the INR using the data from Tin, and learn the
shared INR and hypernetwork parameters θ andw using Tin for both imputation and forecasting, and
Tout for forecasting only. We achieve the conditioning on Tin by optimizing the codes z(j) through
gradient descent. The joint optimization of the codes and common parameters is challenging. In
TimeFlow, it is achieved through a meta-learning approach, adapted from Dupont et al. (2022) and
Zintgraf et al. (2019). The objective is to learn shared parameters so that the code z(j) can be adapted
in just a few gradient steps for a new series x(j). For training, we perform parameter optimization
at two levels: the inner-loop and the outer-loop. The inner-loop adapts the code z(j) to condition
the network on the set T (j)

in , while the outer-loop updates the common parameters using T (j)
in and

also T (j)
out for forecasting. We present our training optimization in Algorithm 1 (Appendix D). At

each training epoch and for each batch of data B composed of time series x(j) sampled from the
training set, we first update individually the codes z(j) in the inner loop, before updating the com-
mon parameters in the outer loop using a loss over the whole batch. We introduce a parameter λ to
weight the importance of the loss over Tout w.r.t. the loss over Tin for the outer-loop. In practice,
when Tout exists, i.e. for forecasting, we set λ = 1 and λ = 0 otherwise. We use an MSE loss over
the observations grid LT (xt, x̃t) := Et∼T [(xt − x̃t)2]. We denote α and η the learning rates of the
inner- and outer-loop. Using K = 3 steps for training and testing is sufficient for our experiments
thanks to the use of second-order meta-learning as explained in Appendix G.

2.3 TIMEFLOW INFERENCE

During the inference process, we aim to infer the time series value for each timestamp in the dense
grid T ∗(j) based on the partial observation grid T ∗(j)

in ⊂ T ∗(j). We can encounter two scenarios:
(i) One where we observe the same time window as during training (T ∗(j) = T (j)) as in the
imputation setting in Section 3. (ii) One, where we are dealing with a newly observed time window
(T ∗(j) ̸= T (j)), as in the forecasting setting in Appendix F.1. At inference, the parameters θ and w
are kept fixed to their final training values. We optimize the individual parameters z∗(j) based on the
newly observed grid T ∗(j)

in using the K inner-steps of the meta-learning algorithm as described in
Algorithm 2 (Appendix D). We are then in position to query fθ,hw(z∗(j))(t) for any given timestamp
t ∈ T ∗(j).

3 EXPERIMENTS: A FOCUS ON IMPUTATION

We conducted a comprehensive evaluation of our TimeFlow framework across three different tasks,
comparing its performance to state-of-the-art continuous and discrete baseline methods. In the core
of the manuscript, we assess TimeFlow’s capabilities to impute sparsely observed time series under
various sampling rates. In the appendixes, Appendix F.1 focuses on long-term forecasting, where
we evaluate TimeFlow over standard long-term forecasting horizons. In Appendix F.2, we tackle a
challenging task forecasting with incomplete look-back windows, thus combining the challenges of
imputation and forecasting. This demonstrates TimeFlow’s versatility and performance.

3

Accepted as a Workshop Paper at TS4H@ICLR2024

Datasets. We tested our framework on three extensive multivariate datasets where a single phe-
nomenon is measured at multiple locations over time, namely Electricity, Traffic and Solar. They
are commonly used in the time series literature and are described in Appendix I.

Imputation setting. We consider the classical imputation setting where n time series are partially
observed over a given time window. Using our approach, we can predict for each time series the
value at any timestamp t in that time window based on partial observations.

For a time series x(j), we denote the set of observed points as T (j)
in and the ground truth set of points

as T (j). The observed time grids may be irregularly spaced and may differ across the different time
series (T (j1)

in ̸= T (j2)
in ,∀j1 ̸= j2). The model is trained for each x(j) following Algorithm 1. Then,

we aim to infer for any unobserved t ∈ T (j) the missing value x(j)t conditioned on T (j)
in according to

Algorithm 2. For this imputation task, the TimeFlow training and inference procedures are detailed
in Section 2 and illustrated in Figure 2. For comparison with the SOTA imputation discrete baselines,
we assume that the ground truth time grid is the same for each sample. The subsampling rate τ is
define as the rate of observed values.

Baselines. We compare TimeFlow with various baselines, including discrete imputation methods,
such as CSDI (Tashiro et al., 2021), SAITS (Du et al., 2023), BRITS (Cao et al., 2018), and TIDER
(Liu et al., 2023), and continuous ones, such as Neural Process (NP, Garnelo et al., 2018), mTAN
(Shukla and Marlin, 2021), and DeepTime with slight adjustments (Woo et al., 2022) (details cf.
Appendix E.5). For each dataset, we divide the series into five independent time windows (consisting
of 2000 timestamps for Electricity and Traffic, and 10,000 timestamps for Solar), perform imputation
on each time window and average the performance to obtain robust results. We evaluate the quality
of the models for different subsampling rates, from the easiest τ = 0.5 to the most difficult τ = 0.05.

Table 1: Mean MAE imputation results on the missing grid only. Each time series is divided into
5 time windows onto which imputation is performed, and the performances are averaged over the
5 windows. In the table, τ stands for the subsampling rate, i.e. the proportion of observed points
considered for each time window. Bold results are best, underlined results are second best. Time-
Flow improvement represents the overall percentage improvement achieved by TimeFlow compared
to the specific method being considered (Appendix I).

Continuous methods Discrete methods

τ TimeFlow DeepTime mTAN Neural Process CSDI SAITS BRITS TIDER

0.05 0.324 ± 0.013 0.379 ± 0.037 0.575 ± 0.039 0.357 ± 0.015 0.462 ± 0.021 0.384 ± 0.019 0.329 ± 0.015 0.427 ± 0.010
0.10 0.250 ± 0.010 0.333 ± 0.034 0.412 ± 0.047 0.417 ± 0.057 0.398 ± 0.072 0.308 ± 0.011 0.287 ± 0.015 0.399 ± 0.009

Electricity 0.20 0.225 ± 0.008 0.244 ± 0.013 0.342 ± 0.014 0.320 ± 0.017 0.341 ± 0.068 0.261 ± 0.008 0.245 ± 0.011 0.391 ± 0.010
0.30 0.212 ± 0.007 0.240 ± 0.014 0.335 ± 0.015 0.300 ± 0.022 0.277 ± 0.059 0.236 ± 0.008 0.221 ± 0.008 0.384 ± 0.009
0.50 0.194 ± 0.007 0.227 ± 0.012 0.340 ± 0.022 0.297 ± 0.016 0.168 ± 0.003 0.209 ± 0.008 0.193 ± 0.008 0.386 ± 0.009

0.05 0.095 ± 0.015 0.190 ± 0.020 0.241 ± 0.102 0.115 ± 0.015 0.374 ± 0.033 0.142 ± 0.016 0.165 ± 0.014 0.291 ± 0.009
0.10 0.083 ± 0.015 0.159 ± 0.013 0.251 ± 0.081 0.114 ± 0.014 0.375 ± 0.038 0.124 ± 0.018 0.132 ± 0.015 0.276 ± 0.010

Solar 0.20 0.072 ± 0.015 0.149 ± 0.020 0.314 ± 0.035 0.109 ± 0.016 0.217 ± 0.023 0.108 ± 0.014 0.109 ± 0.012 0.270 ± 0.010
0.30 0.061 ± 0.012 0.135 ± 0.014 0.338 ± 0.05 0.108 ± 0.016 0.156 ± 0.002 0.100 ± 0.015 0.098 ± 0.012 0.266 ± 0.010
0.50 0.054 ± 0.013 0.098 ± 0.013 0.315 ± 0.080 0.107 ± 0.015 0.079 ± 0.011 0.094 ± 0.013 0.088 ± 0.013 0.262 ± 0.009

0.05 0.283 ± 0.016 0.246 ± 0.010 0.406 ± 0.074 0.318 ± 0.014 0.337 ± 0.045 0.293 ± 0.007 0.261 ± 0.010 0.363 ± 0.007
0.10 0.211 ± 0.012 0.214 ± 0.007 0.319 ± 0.025 0.288 ± 0.018 0.288 ± 0.017 0.237 ± 0.006 0.245 ± 0.009 0.362 ± 0.006

Traffic 0.20 0.168 ± 0.006 0.216 ± 0.006 0.270 ± 0.012 0.271 ± 0.011 0.269 ± 0.017 0.197 ± 0.005 0.224 ± 0.008 0.361 ± 0.006
0.30 0.151 ± 0.007 0.172 ± 0.008 0.251 ± 0.006 0.259 ± 0.012 0.240 ± 0.037 0.180 ± 0.006 0.197 ± 0.007 0.355 ± 0.006
0.50 0.139 ± 0.007 0.171 ± 0.005 0.278 ± 0.040 0.240 ± 0.021 0.144 ± 0.022 0.160 ± 0.008 0.161 ± 0.060 0.354 ± 0.007

TimeFlow improvement / 24.14 % 50.53 % 31.61 % 36.12 % 20.33 % 18.90 % 53.40 %

Results. In Table 1, we show that TimeFlow outperforms discrete and continuous models across
almost all τ ’s for the given datasets. The relative improvements of TimeFlow over baselines are
significant, ranging from 15% to 50%. We highlight that TimeFlow outperforms all discrete base-
lines while inheriting the advantages of continuous modeling, such as being grid-independent and
able to deal with unaligned sensors. Qualitatively, we present visual imputation results in Figure 3
(Appendix E.2) where our model demonstrates impressive imputation capabilities on the Electricity
dataset compare to the best baseline, BRITS.

4

Accepted as a Workshop Paper at TS4H@ICLR2024

4 CONCLUSION

We have introduced a unified framework for continuous time series modeling leveraging conditional
INR and meta-learning. Our experiments have demonstrated superior performance compared to
other continuous methods, and better or comparable results to SOTA discrete methods. One of the
standout features of our framework is its inherent continuity and the ability to modulate the INR
parameters. This unique flexibility lets TimeFlow effectively tackle a wide array of challenges,
including forecasting in the presence of missing values, accommodating irregular time steps, and
extending the trained model’s applicability to previously unseen time series and new time windows.
Our empirical results have shown TimeFlow’s effectiveness in handling homogeneous multivariate
time series. As a logical next step, extending TimeFlow’s capabilities to address heterogeneous
multivariate phenomena represents a promising direction for future research.

REFERENCES

M. Bilos, K. Rasul, A. Schneider, Y. Nevmyvaka, and S. Günnemann. Modeling temporal data
as continuous functions with stochastic process diffusion. In A. Krause, E. Brunskill, K. Cho,
B. Engelhardt, S. Sabato, and J. Scarlett, editors, International Conference on Machine Learning,
ICML, volume 202 of Proceedings of Machine Learning Research, pages 2452–2470. PMLR,
2023.

E. D. Brouwer, J. Simm, A. Arany, and Y. Moreau. Gru-ode-bayes: continuous modeling of
sporadically-observed time series. In Proceedings of the 33rd International Conference on Neural
Information Processing Systems, pages 7379–7390, 2019.

W. Cao, D. Wang, J. Li, H. Zhou, Y. Li, and L. Li. Brits: bidirectional recurrent imputation for time
series. In Proceedings of the 32nd International Conference on Neural Information Processing
Systems, pages 6776–6786, 2018.

H. Chen, S. Grant-Muller, L. Mussone, and F. Montgomery. A study of hybrid neural network ap-
proaches and the effects of missing data on traffic forecasting. Neural Computing & Applications,
10:277–286, 2001.

Y. G. Cinar, H. Mirisaee, P. Goswami, É. Gaussier, and A. Aı̈t-Bachir. Period-aware content attention
rnns for time series forecasting with missing values. Neurocomputing, 312:177–186, 2018.

J. S. Clark and O. N. Bjørnstad. Population time series: process variability, observation errors,
missing values, lags, and hidden states. Ecology, 85(11):3140–3150, 2004.

G. Corani, A. Benavoli, and M. Zaffalon. Time series forecasting with gaussian processes needs pri-
ors. In Machine Learning and Knowledge Discovery in Databases. Applied Data Science Track:
European Conference, ECML PKDD 2021, Bilbao, Spain, September 13–17, 2021, Proceedings,
Part IV 21, pages 103–117. Springer, 2021.

W. Du, D. Côté, and Y. Liu. Saits: Self-attention-based imputation for time series. Expert Systems
with Applications, 219:119619, 2023.

E. Dupont, H. Kim, S. M. A. Eslami, D. J. Rezende, and D. Rosenbaum. From data to functa: Your
data point is a function and you can treat it like one. In International Conference on Machine
Learning, ICML 2022, 17-23 July 2022, Baltimore, Maryland, USA, volume 162 of Proceedings
of Machine Learning Research, pages 5694–5725. PMLR, 2022.

R. Fathony, A. K. Sahu, D. Willmott, and J. Z. Kolter. Multiplicative filter networks. In International
Conference on Learning Representations, 2021.

C. Finn, P. Abbeel, and S. Levine. Model-agnostic meta-learning for fast adaptation of deep net-
works. In International conference on machine learning, pages 1126–1135. PMLR, 2017.

E. Fons, A. Sztrajman, Y. El-Laham, A. Iosifidis, and S. Vyetrenko. Hypertime: Implicit neural
representation for time series. CoRR, abs/2208.05836, 2022.

5

Accepted as a Workshop Paper at TS4H@ICLR2024

V. Fortuin, D. Baranchuk, G. Rätsch, and S. Mandt. Gp-vae: Deep probabilistic time series im-
putation. In International conference on artificial intelligence and statistics, pages 1651–1661.
PMLR, 2020.

M. Garnelo, D. Rosenbaum, C. Maddison, T. Ramalho, D. Saxton, M. Shanahan, Y. W. Teh, D. J.
Rezende, and S. M. A. Eslami. Conditional neural processes. In Proceedings of the 35th Interna-
tional Conference on Machine Learning, ICML, volume 80, pages 1690–1699. PMLR, 2018.

L. Huang and T. Hoefler. Compressing multidimensional weather and climate data into neural
networks. In International Conference on Learning Representations, ICLR, 2023.

K. Jeong and Y. Shin. Time-series anomaly detection with implicit neural representation. CoRR,
abs/2201.11950, 2022.

T. Kim, W. Ko, and J. Kim. Analysis and impact evaluation of missing data imputation in day-ahead
pv generation forecasting. Applied Sciences, 9(1):204, 2019.

S. Liu, H. Yu, C. Liao, J. Li, W. Lin, A. X. Liu, and S. Dustdar. Pyraformer: Low-complexity pyra-
midal attention for long-range time series modeling and forecasting. In The Tenth International
Conference on Learning Representations, ICLR 2022, Virtual Event, April 25-29, 2022, 2022.

S. Liu, X. Li, G. Cong, Y. Chen, and Y. Jiang. Multivariate time-series imputation with disentangled
temporal representations. In The Eleventh International Conference on Learning Representations,
ICLR, 2023.

Y. Liu, R. Yu, S. Zheng, E. Zhan, and Y. Yue. Naomi: Non-autoregressive multiresolution sequence
imputation. Advances in neural information processing systems, 32, 2019.

Y. Luo, X. Cai, Y. Zhang, J. Xu, et al. Multivariate time series imputation with generative adversarial
networks. Advances in neural information processing systems, 31, 2018.

Y. Luo, Y. Zhang, X. Cai, and X. Yuan. E2gan: End-to-end generative adversarial network for
multivariate time series imputation. In Proceedings of the 28th international joint conference on
artificial intelligence, pages 3094–3100. AAAI Press, 2019.

B. Mildenhall, P. P. Srinivasan, M. Tancik, J. T. Barron, R. Ramamoorthi, and R. Ng. Nerf: Repre-
senting scenes as neural radiance fields for view synthesis. Communications of the ACM, 65(1):
99–106, 2021.

A. Nichol, J. Achiam, and J. Schulman. On first-order meta-learning algorithms. arXiv preprint
arXiv:1803.02999, 2018.

Y. Nie, N. H. Nguyen, P. Sinthong, and J. Kalagnanam. A time series is worth 64 words: Long-term
forecasting with transformers. CoRR, abs/2211.14730, 2022.

C. E. Rasmussen and C. K. I. Williams. Gaussian processes for machine learning. Adaptive com-
putation and machine learning. MIT Press, 2006.

Y. Rubanova, R. T. Q. Chen, and D. Duvenaud. Latent odes for irregularly-sampled time series.
CoRR, abs/1907.03907, 2019.

M. Schulz and K. Stattegger. Spectrum: Spectral analysis of unevenly spaced paleoclimatic time
series. Computers & Geosciences, 23(9):929–945, 1997.

S. N. Shukla and B. M. Marlin. Multi-time attention networks for irregularly sampled time series.
In 9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria,
May 3-7, 2021, 2021.

V. Sitzmann, J. N. P. Martel, A. W. Bergman, D. B. Lindell, and G. Wetzstein. Implicit neural
representations with periodic activation functions. In Advances in Neural Information Processing
Systems 33: Annual Conference on Neural Information Processing Systems 2020, NeurIPS 2020,
December 6-12, 2020, virtual, 2020.

6

Accepted as a Workshop Paper at TS4H@ICLR2024

M. Tancik, P. Srinivasan, B. Mildenhall, S. Fridovich-Keil, N. Raghavan, U. Singhal, R. Ramamoor-
thi, J. Barron, and R. Ng. Fourier features let networks learn high frequency functions in low
dimensional domains. Advances in Neural Information Processing Systems, 33:7537–7547, 2020.

X. Tang, H. Yao, Y. Sun, C. C. Aggarwal, P. Mitra, and S. Wang. Joint modeling of local and global
temporal dynamics for multivariate time series forecasting with missing values. In The Thirty-
Fourth AAAI Conference on Artificial Intelligence, AAAI 2020, The Thirty-Second Innovative
Applications of Artificial Intelligence Conference, IAAI 2020, The Tenth AAAI Symposium on
Educational Advances in Artificial Intelligence, EAAI, pages 5956–5963. AAAI Press, 2020.

Y. Tashiro, J. Song, Y. Song, and S. Ermon. Csdi: Conditional score-based diffusion models for
probabilistic time series imputation. Advances in Neural Information Processing Systems, 34:
24804–24816, 2021.

G. Woo, C. Liu, D. Sahoo, A. Kumar, and S. C. H. Hoi. Deeptime: Deep time-index meta-learning
for non-stationary time-series forecasting. CoRR, abs/2207.06046, 2022.

H. Wu, J. Xu, J. Wang, and M. Long. Autoformer: Decomposition transformers with auto-
correlation for long-term series forecasting. In M. Ranzato, A. Beygelzimer, Y. N. Dauphin,
P. Liang, and J. W. Vaughan, editors, Advances in Neural Information Processing Systems 34:
Annual Conference on Neural Information Processing Systems 2021, NeurIPS 2021, December
6-14, 2021, virtual, pages 22419–22430, 2021.

Y. Yin, M. Kirchmeyer, J.-Y. Franceschi, A. Rakotomamonjy, and P. Gallinari. Continuous pde dy-
namics forecasting with implicit neural representations. In International Conference on Learning
Representations, ICLR, 2023.

A. Zeng, M. Chen, L. Zhang, and Q. Xu. Are transformers effective for time series forecasting?
CoRR, abs/2205.13504, 2022.

H. Zhou, S. Zhang, J. Peng, S. Zhang, J. Li, H. Xiong, and W. Zhang. Informer: Beyond efficient
transformer for long sequence time-series forecasting. In Proceedings of the AAAI conference on
artificial intelligence, pages 11106–11115, 2021.

T. Zhou, Z. Ma, X. Wang, Q. Wen, L. Sun, T. Yao, W. Yin, and R. Jin. Film: Frequency improved
legendre memory model for long-term time series forecasting. CoRR, abs/2205.08897, 2022a.

T. Zhou, Z. Ma, Q. Wen, X. Wang, L. Sun, and R. Jin. Fedformer: Frequency enhanced decomposed
transformer for long-term series forecasting. In K. Chaudhuri, S. Jegelka, L. Song, C. Szepesvári,
G. Niu, and S. Sabato, editors, International Conference on Machine Learning, ICML 2022,
17-23 July 2022, Baltimore, Maryland, USA, volume 162 of Proceedings of Machine Learning
Research, pages 27268–27286. PMLR, 2022b.

L. Zintgraf, K. Shiarli, V. Kurin, K. Hofmann, and S. Whiteson. Fast context adaptation via meta-
learning. In International Conference on Machine Learning, pages 7693–7702. PMLR, 2019.

7

Accepted as a Workshop Paper at TS4H@ICLR2024

A REPRODUCTIBLITY STATEMENT

Our work is entirely reproducible, and all the references to the information in order to reproduce it
are in this section.

Data. The dataset description, processing and normalization are presented in Appendix I.

Model. The model and the training details are presented in Section 2 and the hyperparameter
selection is available in Appendix H.1.

GPU. We used NVIDIA TITAN RTX 24Go single GPU to conduct all the experiments for our
method, which is coded in PyTorch (Python 3.9.2).

B RELATED CONTENT

Discrete methods for time series imputation and forecasting. Recently, Deep Learning (DL)
methods have been widely used for both time series imputation and forecasting. For imputation,
BRITS (Cao et al., 2018) uses a bidirectional recurrent neural network (RNN). Alternative frame-
works were later explored, e.g., GAN-based (Luo et al., 2018; 2019; Liu et al., 2019), VAE-based
(Fortuin et al., 2020), diffusion-based (Tashiro et al., 2021), matrix factorization-based (TIDER,
Liu et al., 2023) and transformer-based (SAITS, Du et al., 2023) approaches. These methods
cannot handle irregular time series. In situations involving multiple sensors, such as those placed
at different locations, incorporating new sensors necessitates retraining the entire model, thereby
limiting their usability. For forecasting, most recent DL SOTA models are based on transformers.
Initial approaches apply plain transformers directly to the series, each token being a series element
(Zhou et al., 2021; Liu et al., 2022; Wu et al., 2021; Zhou et al., 2022b). These transformers
may underperform linear models as shown in (Zeng et al., 2022). PatchTST (Nie et al., 2022)
significantly improved transformers SOTA performance by considering sub-series as tokens of the
series. However, all these models cannot handle properly irregularly sampled look-back windows.

Continuous methods for time series. Gaussian Processes (Rasmussen and Williams, 2006) have
been a popular family of methods for modeling time series as continuous functions. They require
choosing an appropriate kernel (Corani et al., 2021) and may suffer limitations in large dimensions
settings. Neural Processes (NPs) (Garnelo et al., 2018; Kim et al., 2019) parameterize Gaussian
processes through an encoder-decoder architecture leading to more computationally efficient imple-
mentations. NPs have been used to model simple signals for imputation and forecasting tasks, but
struggle with more complex signals. Bilos et al. (2023) parameterizes a Gaussian Process through a
diffusion model, but the model has difficulty adapting to a large number of timestamps. Other ap-
proaches such as Brouwer et al. (2019) and Rubanova et al. (2019) model time series continuously
with latent ordinary differential equations. mTAN (Shukla and Marlin, 2021) a transformer model
uses an attention mechanism to impute irregular time series. While these approaches have shown
significant progress in continuous modeling for time series, their performances on regularly spaced
grids are inferior compared to the aforementioned discrete models and they lack extrapolation capa-
bility when dealing with complex dynamics.

Implicit neural representations. The recent development of implicit neural representations
(INRs) has led to impressive results in computer vision (Sitzmann et al., 2020; Tancik et al., 2020;
Fathony et al., 2021; Mildenhall et al., 2021). INRs can represent data as a continuous function,
which can be queried at any coordinate. While they have been applied in other fields such as physics
(Yin et al., 2023) and meteorology (Huang and Hoefler, 2023), there has been limited research on
INRs for time series analysis. Prior works (Fons et al., 2022; Jeong and Shin, 2022) focused on
time series generation for data augmentation and on time series encoding for reconstruction but are
limited by their fixed grid input requirement. DeepTime (Woo et al., 2022) is the closest work to our
contribution. DeepTime learns a set of basis INR functions from a training set of multiple time series
and combines them using a Ridge regressor. This regressor allows it to adapt to new time series. It
has been designed for forecasting only. The original version cannot handle imputation properly and
was adapted to do so for our comparisons. In our experiments, we will demonstrate that TimeFlow

8

Accepted as a Workshop Paper at TS4H@ICLR2024

significantly outperforms DeepTime in imputation and also in forecasting tasks when dealing with
missing values in the look-back window. TimeFlow also shows a slight advantage over DeepTime
in forecasting regularly sampled series.

C INR GLOBAL SCHEME

Figure 1: Overview of TimeFlow architecture. Forward pass to approximate the time series x(j). σ
stands for the ReLU activation function.

D TRAINING AND INFERENCE ALGORITHMS

Algorithm 1: TimeFlow Training
while no convergence do

Sample batch B of data (x(j))j∈B;
Set codes to zero z(j) ← 0,∀j ∈ B ;
// inner loop for encoding:
for j ∈ B and step ∈ {1, ...,K} do

z(j)← z(j) − α∇z(j)LT (j)
in

(fθ,hw(z(j)), x
(j));

// outer loop step:
[θ, w]← [θ, w]− η∇[θ,w]

1
|B|

∑
j∈B[LT (j)

in
(fθ,hw(z(j)), x

(j)) + λLT (j)
out

(fθ,hw(z(j)), x
(j))] ;

Algorithm 2: TimeFlow Inference with trained θ, w

For the j-th series (x(j)), set code to zero z∗(j) ← 0;
for step ∈ {1, ...,K} do

z∗(j) ← z∗(j) − α∇z∗(j)LT ∗(j)
in

(fθ,hw(z∗(j)), xt)

Query fθ,hw(z∗(j))(t) for any t ∈ T ∗(j)

E IMPUTATION EXPERIMENTS

E.1 MAIN SETTING DETAILS

For the imputation task in Section 3, the TimeFlow training and inference procedures are detailed
and illustrated in Figure 2.

9

Accepted as a Workshop Paper at TS4H@ICLR2024

Training

Inference

Figure 2: Training and inference procedures of TimeFlow for imputation. (i) During training, for
each time series x(j), our observations (red dots •) are restricted to the sparsely sampled grid, de-
noted as T (j)

in . (ii) During inference, our objective is to infer the values over the dense grids T (j),
on the unobserved data points (such as the blue dots • on the figure).

E.2 IMPUTATION VISUAL RESULTS

Qualitatively, we see on example series in Figure 3 that our model shows significant imputation
capabilities, with on a subsampling rate at τ = 0.1 on the Electricity dataset. It captures well
different frequencies and amplitudes in a challenging case (sample 35), although it underestimates
the amplitude of some peaks. In a more challenging scenario (sample 25), where the series exhibit
additional trend changes and frequency variations within the data, TimeFlow correctly imputes most
timestamps, outperforming BRITS, which is the best-performing method for the Electricity dataset.

0.00 0.02 0.04 0.06 0.08 0.10

0.0

2.5

Individual 35: TimeFlow MAE : 0.316 BRITS MAE : 0.488

0.00 0.02 0.04 0.06 0.08 0.102

0

2
Individual 25: TimeFlow MAE : 0.404 BRITS MAE : 0.737

Ground Truth TimeFlow imputation BRITS imputation Learned points

Figure 3: Electricity dataset. TimeFlow imputation (blue line) and BRITS imputation (gray line)
with 10% of known point (red points) on the eight first days of samples 35 (top) and 25 (bottom).

E.3 MODELS COMPLEXITY

We can see in Table 2 that our method has fewer parameters than SOTA imputation methods, 10
times less than BRITS and 20 times less than SAITS. It is mainly due to their modelisation of
interaction between samples. SAITS, which is based on transformers has the highest number of
parameters when mTAN has the lowest number of parameters.

E.4 IMPUTATION FOR PREVIOUSLY UNSEEN TIME SERIES

In more practical scenarios, such as cases involving the installation of new sensors, we often en-
counter new time series originating from the same underlying phenomenon. In such instances, it
becomes crucial to make inferences for these previously unseen time series. Thanks to efficient

10

Accepted as a Workshop Paper at TS4H@ICLR2024

Table 2: Number of parameters for each DL methods on the imputation task on the Electricity
dataset.

TimeFlow DeepTime NeuralProcess mTAN SAITS BRITS TIDER

Number of parameters 602k 1315k 248k 113k 11 137k 6 220k 1 034k

adaptation in latent space, our model can easily be applied to these new time series, contrasting with
SOTA methods like SAITS and BRITS, which require full model retraining on the whole set of time
series.

Setting In this section we analyze in details the imputations results for previously unseen time
series described in Section 3. Specifically, TimeFlow is trained on a given set of time series within
a defined time window and then used for inference on new time series. We train TimeFlow on 50 %
of the samples and consider the remaining 50 % as the new time series.

We compare in Table 3 observed grid fit scores and missing grid inference scores for time series
known at training and time series unknown at training.

Table 3: TimeFlow MAE imputation errors results for imputation previsouly unseen time series.

Known time series New time series

τ Fit Inference Fit Inference

Electricity

0.05 0.060 ± 0.010 0.402 ± 0.021 0.142 ± 0.083 0.413 ± 0.026
0.10 0.046 ± 0.006 0.302 ± 0.010 0.144 ± 0.098 0.309 ± 0.016
0.20 0.067 ± 0.015 0.285 ± 0.014 0.154 ± 0.089 0.291 ± 0.022
0.30 0.093 ± 0.022 0.266 ± 0.010 0.163 ± 0.073 0.271 ± 0.017
0.50 0.108 ± 0.012 0.236 ± 0.010 0.167 ± 0.061 0.245 ± 0.017

Solar

0.05 0.014 ± 0.002 0.104 ± 0.015 0.050 ± 0.037 0.109 ± 0.016
0.10 0.017 ± 0.002 0.092 ± 0.015 0.052 ± 0.036 0.099 ± 0.017
0.20 0.028 ± 0.008 0.078 ± 0.014 0.058 ± 0.031 0.089 ± 0.017
0.30 0.038 ± 0.009 0.072 ± 0.013 0.063 ± 0.028 0.084 ± 0.018
0.50 0.045 ± 0.011 0.066 ± 0.013 0.067 ± 0.025 0.080 ± 0.019

Traffic

0.05 0.044 ± 0.003 0.291 ± 0.013 094 ± 0.051 0.291 ± 0.012
0.10 0.033 ± 0.001 0.209 ± 0.010 0.093 ± 0.060 0.216 ± 0.012
0.20 0.037 ± 0.006 0.175 ± 0.008 0.095 ± 0.058 0.186 ± 0.013
0.30 0.048 ± 0.005 0.164 ± 0.006 0.098 ± 0.051 0.175 ± 0.013
0.50 0.068 ± 0.004 0.159 ± 0.007 0.110 ± 0.042 0.169 ± 0.012

Results The results presented in Table 3 indicate that the inference MAE for missing grids shows
consistency between known and new samples, regardless of the data or sampling rate. However, it is
worth noting that there is a slight drop in performance compared to the results in table Table 1. This
decrease is because in Table 3, the shared architecture is trained on only half the samples, affecting
its overall performance.

E.5 DETAILS ON DEEPTIME ADAPTATION FOR IMPUTATION

As DeepTime was proposed to address the forecasting task with a deeptime-index model, the authors
did not tackle the task of imputation and left it out for future work. Given the success of this method
and the motivation of our work, we wanted to explore its capabilities to impute time series with
several subsampling rates. Following our current framework, we first tried to train the model in
a self-supervised way, i.e. trying to reconstruct observations x(j) ∈ T (j) after the INR has been
conditioned with the Ridge Regressor on the same set of observations, but discovered failure cases
for τ ≤ 0.20. To be faithful to the original supervised training of DeepTime, we therefore randomly
mask out 50% of the observations that we use as context for the Ridge Regressor and try to infer the
other 50% (the targets) to train the INR.

We provide a qualitative comparison of the model’s performance with these two different training
procedures in Figure 4. We can notice that the model that results from the self-supervised training
perfectly fits the observations but completely misses the important patterns of the series. On the
other hand, when DeepTime is trained to infer target values based on observations, it is able to

11

Accepted as a Workshop Paper at TS4H@ICLR2024

capture the general trends. We think that in the small subsampling regime (τ ≤ 0.20), the Ridge
Regressor easily fits very well all the observations which hinders the training of the INR’s basis.

0.00 0.02 0.04 0.06 0.08 0.10
2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

Individual 11 : MAE self-supervised : 0.730 MAE supervised : 0.404

0.00 0.02 0.04 0.06 0.08 0.10

2

1

0

1

2
Individual 29 : MAE self-supervised : 0.850 MAE supervised : 0.442

Ground Truth Deeptime self-supervised Deeptime supervised Observed points

Figure 4: Electricity dataset. Self supervised DeepTime imputation (blue line) and supervised Deep-
Time imputation (black line) with 5% of known point (red points) on the eight first days of samples
11 (top) and 29 (bottom).

E.6 IMPUTATION AGAINST NON DEEP LEARNING METHODS

Setting In addition to the deep learning methods presented in Table 1, we evalute TimeFlow
against two classic machine learning baselines, K-Nearest Neighbours (KNN) and linear interpo-
lation, which are valuable for getting an idea of the complexity of the problem.

Table 4: Mean MAE imputation results on the missing grid only over five different time window. τ
stands for the subsampling rate. Bold results are best, underline results are second best.

τ TimeFlow Linear interpolation KNN (k=3)

0.05 0.324 ± 0.013 0.828 ± 0.045 0.531 ± 0.033
0.10 0.250 ± 0.010 0.716 ± 0.039 0.416 ± 0.020

Electricity 0.20 0.225 ± 0.008 0.518 ± 0.029 0.363 ± 0.019
0.30 0.212 ± 0.007 0.396 ± 0.022 0.342 ± 0.017
0.50 0.194 ± 0.007 0.275 ± 0.015 0.323 ± 0.016

0.05 0.095 ± 0.015 0.339 ± 0.031 0.151 ± 0.017
0.10 0.083 ± 0.015 0.170 ± 0.014 0.128 ± 0.017

Solar 0.20 0.072 ± 0.015 0.088 ± 0.010 0.110 ± 0.016
0.30 0.061 ± 0.012 0.063 ± 0.009 0.103 ± 0.017
0.50 0.054 ± 0.013 0.044 ± 0.008 0.096 ± 0.016

0.05 0.283 ± 0.016 0.813 ± 0.027 0.387 ± 0.014
0.10 0.211 ± 0.012 0.701 ± 0.026 0.293 ± 0.012

Traffic 0.20 0.168 ± 0.006 0.508 ± 0.022 0.249 ± 0.010
0.30 0.151 ± 0.007 0.387 ± 0.018 0.228 ± 0.009
0.50 0.139 ± 0.007 0.263 ± 0.013 0.204 ± 0.009

TimeFlow improvement / 49.06 % 35.95 %

Results KNN imputation uses information from other individuals and gives satisfactory results at
all sampling rates. On the other hand, the purely univariate approach of linear interpolation struggles
at low sampling rates but performs well at high sampling rates. TimeFlow significantly outperforms
both baselines by a large margin.

12

Accepted as a Workshop Paper at TS4H@ICLR2024

F FORECASTING EXPERIMENTS

F.1 CLASSICAL FORECASTING

In this section, we are interested in the conventional long-term forecasting scenario. It consists in
predicting the phenomenon in a specific future period, the horizon, based on the history of a limited
past period, the look-back window. The forecaster is trained on a set of n observed time series for a
given time window (train period) and tested on new time windows.

Training

Inference

Figure 5: Training and inference procedure of TimeFlow for forecasting. (i) During training (top–
figure), for each time series x(j), we observe some look-back window/horizon drawing pairs in the
trained period. TimeFlow is trained with Algorithm 1 to predict all observed timestamps in this
drawing pairs while being conditioned by the observed look-back window. (ii) Once TimeFlow is
optimized, the objective during inference (bottom-figure) is to infer the horizon over new time win-
dows (blue dots •) while being conditioned by the newly observed look-back window (red dots •).

Setting For a given time series x(j), T (j)
in denotes the look-back window and T (j)

out the horizon of
H points. During training, at each epoch, we train fθ,hw(z(j)) following Algorithm 1 with randomly

drawn pairs of look-back window and horizon (T (j)
in ∪ T

(j)
out)j∈B within the observed train period.

Then, for a new time window T ∗(j), given a look-back window T ∗(j)
in we forecast future values any

t ∈ T ∗(j), the horizon interval, following Algorithm 2. We illustrate the training and inference of
TimeFlow for the forecasting task in Figure 5.

Baselines. To evaluate the quality of our model in long-term forecasting, we compare it to the
discrete baselines PatchTST (Nie et al., 2022), DLinear (Zeng et al., 2022), AutoFormer (Wu et al.,
2021), and Informer (Zhou et al., 2021). We also include continuous baselines DeepTime and Neu-
ral Process (NP). In Table 5, we present the forecasting results for standard horizons in long-term
forecasting: H ∈ {96, 192, 336, 720}. The look-back window length is fixed to 512.

Results. The results in Table 5 show that our approach ranks in the top two across all datasets
and horizons and is the overall best continuous method. TimeFlow’s performance is comparable to
the current SOTA model PatchTST, with only 2% relative difference. Moreover, TimeFlow shows
consistent results across the three datasets, whereas the other best discrete and continuous baselines,
i.e. PatchTST and DeepTime, performance drops for some datasets. We also note that, despite the
great performance of the SOTA PatchTST, other transformer-based baselines (discrete methods in
Table 5) perform poorly. Overall, although this evaluation setting favors discrete methods because
the time series are observed at evenly distributed time steps, TimeFlow consistently performs as
well as PatchTST and outperforms all the other methods, whether discrete or continuous. It is the
first time that a continuous model has achieved the same level of performance as discrete methods
within their specific setting. We observe that, despite comparable results between TimeFlow and the

13

Accepted as a Workshop Paper at TS4H@ICLR2024

Table 5: Mean MAE forecast results averaged over different time windows. Each time, the model
is trained on one time window and tested on the others (there are 2 windows for SolarH and 5 for
Electricity and Traffic). H stands for the horizon. Bold results are best, and underlined results are
second best. TimeFlow improvement represents the overall percentage improvement achieved by
TimeFlow compared to the specific method being considered.

Continuous methods Discrete methods

H TimeFlow DeepTime Neural Process Patch-TST DLinear AutoFormer Informer

Electricity

96 0.228 ± 0.028 0.244 ± 0.026 0.392 ± 0.045 0.221 ± 0.023 0.241 ± 0.030 0.546 ± 0.277 0.603 ± 0.255
192 0.238 ± 0.020 0.252 ± 0.019 0.401 ± 0.046 0.229 ± 0.020 0.252 ± 0.025 0.500 ± 0.190 0.690 ± 0.291
336 0.270 ± 0.031 0.284 ± 0.034 0.434 ± 0.076 0.251 ± 0.027 0.288 ± 0.038 0.523 ± 0.188 0.736 ± 0.271
720 0.316 ± 0.055 0.359 ± 0.051 0.607 ± 0.150 0.297 ± 0.039 0.365 ± 0.059 0.631 ± 0.237 0.746 ± 0.265

SolarH

96 0.190 ± 0.013 0.190 ± 0.020 0.221 ± 0.048 0.262 ± 0.070 0.208 ± 0.014 0.245 ± 0.045 0.248 ± 0.022
192 0.202 ± 0.020 0.204 ± 0.028 0.244 ± 0.048 0.253 ± 0.051 0.217 ± 0.022 0.333 ± 0.107 0.270 ± 0.031
336 0.209 ± 0.017 0.199 ± 0.026 0.240 ± 0.006 0.259 ± 0.071 0.217 ± 0.026 0.334 ± 0.079 0.328 ± 0.048
720 0.218 ± 0.041 0.229 ± 0.024 0.403 ± 0.147 0.267 ± 0.064 0.249 ± 0.034 0.351 ± 0.055 0.337 ± 0.037

Traffic

96 0.217 ± 0.032 0.228 ± 0.032 0.283 ± 0.027 0.203 ± 0.037 0.228 ± 0.033 0.319 ± 0.059 0.372 ± 0.078
192 0.212 ± 0.028 0.220 ± 0.022 0.292 ± 0.024 0.197 ± 0.030 0.221 ± 0.023 0.368 ± 0.057 0.511 ± 0.247
336 0.238 ± 0.034 0.245 ± 0.038 0.305 ± 0.039 0.222 ± 0.039 0.250 ± 0.040 0.434 ± 0.061 0.561 ± 0.263
720 0.279 ± 0.050 0.290 ± 0.052 0.339 ± 0.038 0.269 ± 0.057 0.300 ± 0.057 0.462 ± 0.062 0.638 ± 0.067

TimeFlow improvement / 3.74 % 29.06 % 3.23 % 6.92 % 42.09 % 48.57 %

DLinear, DeepTime baselines for the 96, 192, and 336 time horizons, the difference becomes more
significant when the longest horizon is considered.

Discussion. Our method consistently performs as well as PatchTST, in the setting with evenly
distributed time steps. This achievement is significant as our continuous model can attain the same
level of performance as discrete methods within their specific setting.

Forecasting on previously unseen time series. TimeFlow considers that the series observed at
different locations are independent, similar to PatchTST, NP, and DeepTime. This allows it to gen-
eralize to previously unseen time series from the same phenomenon. Note that this is not the case
for most discrete methods. We show in Appendix F.5, Table 9 that TimeFlow is able to generalize
to previously unseen time series with no significant performance drop.

F.1.1 FORECASTING ON NEW PERIODS FOR UNKNOWN SAMPLES WITH MISSING VALUES

Setting After undergoing training for a specific duration on a given set of samples, our model
demonstrates continuity, enabling us to extend its capabilities to model a continuum for new samples
across different time windows. To accomplish this, we maintain the same training configuration as
described in Appendix F.1, but apply inference to new samples within unseen time windows.

Baseline In the above scenario, models such as PatchTST (and other DL models) must proceed
in two steps: (i) completing the look-back window on a dense regular grid using imputation; (ii)
apply the model on the completed window to predict the future. We compared TimeFlow with
the following two-step processing baseline: linear interpolation handling the missing values within
the partially observed look-back window, and PatchTST handling the forecasting task. Due to the
unavailability of data from other samples for the same period, when dealing with unseen time win-
dows for new samples, we are restrained to interpolation as imputation method. We conducted
experiments on the Traffic and Electricity datasets, focusing on the 96 and 192 horizons. In Table 6,
we present the results at different sampling rates τ ∈ {0.5, 0.2, 0.1} within the look-back window.

Results Table 6 shows that our method significantly outperforms the baseline (linear interpolation
+ PatchTST). This poor performance of the baseline can be attributed to the imputation errors in-
duced by the linear interpolation. Although our method was not explicitly trained for imputation ,
it demonstrates a remarkable capability to recover the ground truth values for the partially observed
historical window, leading to precise forecasts. We show the extended results for Traffic and Elec-
tricity datasets in the supplementary materials. In addition, our method exhibits effectiveness even
at significantly low sampling rates. When it comes to the results presented in Table 5, our method
shows a relatively modest degradation when the subsampling rate drops, in comparison to the results

14

Accepted as a Workshop Paper at TS4H@ICLR2024

obtained in the optimal setting. We illustrate the qualitative results in Figure 6 using a look-back
window with a 20 % sampling rate for a horizon of 96 time steps.

F.2 CHALLENGING TASK: FORECAST WHILE IMPUTING INCOMPLETE LOOK-BACK WINDOWS

In real-world scenarios, it is common to encounter missing or irregularly sampled series when mak-
ing predictions on new time windows (Cinar et al., 2018; Tang et al., 2020). Continuous methods
can handle these cases, as they are designed to accommodate irregular sampling within the look-
back window. In this section, we formulate a task to simulate these real-world scenarios. It’s worth
noting that this task is often encountered in practice but is rarely considered in the DL literature.

Setting and baselines. This scenario is similar to the forecast setting in Appendix F.1 and illus-
trated in Figure 5. The difference is that during inference, the look-back window is subsampled at
a rate τ smaller than the one used for the training phase. This simulates a situation with missing
observations in the look back window. Consequently, two distinct tasks emerge during the inference
phase: imputing missing points within the sparsely observed look-back window, and forecasting
over the horizon with this degraded context. In Table 6, we compare to the two other continuous
baselines, DeepTime and NP on Electricity and Traffic for different τs and horizons.

Table 6: MAE results for forecasting with missing values in the look-back window. τ stands for
the percentage of observed values in the look-back window. Best results are in bold. TimeFlow
improvement represents the overall percentage improvement (for each task) achieved by TimeFlow
compared to the specific method being considered.

TimeFlow DeepTime Neural Process

H τ Imputation error Forecast error Imputation error Forecast error Imputation error Forecast error

Electricity

96
0.5 0.151 ± 0.003 0.239 ± 0.013 0.209 ± 0.004 0.270 ± 0.019 0.460 ± 0.048 0.486 ± 0.078
0.2 0.208 ± 0.006 0.260 ± 0.015 0.249 ± 0.006 0.296 ± 0.023 0.644 ± 0.079 0.650 ± 0.095
0.1 0.272 ± 0.006 0.295 ± 0.016 0.284 ± 0.007 0.324 ± 0.026 0.740 ± 0.083 0.737 ± 0.106

192
0.5 0.149 ± 0.004 0.235 ± 0.011 0.204 ± 0.004 0.265 ± 0.018 0.461 ± 0.045 0.498 ± 0.070
0.2 0.209 ± 0.006 0.257 ± 0.013 0.244 ± 0.007 0.290 ± 0.023 0.601 ± 0.075 0.626 ± 0.101
0.1 0.274 ± 0.010 0.289 ± 0.016 0.282 ± 0.007 0.315 ± 0.025 0.461 ± 0.045 0.724 ± 0.090

Traffic

96
0.5 0.180 ± 0.016 0.219 ± 0.026 0.272 ± 0.028 0.243 ± 0.030 0.436 ± 0.025 0.444 ± 0.047
0.2 0.239 ± 0.019 0.243 ± 0.027 0.335 ± 0.026 0.293 ± 0.027 0.596 ± 0.049 0.597 ± 0.075
0.1 0.312 ± 0.020 0.290 ± 0.027 0.385 ± 0.025 0.344 ± 0.027 0.734 ± 0.102 0.731 ± 0.132

192
0.5 0.176 ± 0.014 0.217 ± 0.017 0.241 ± 0.027 0.234 ± 0.021 0.477 ± 0.042 0.476 ± 0.043
0.2 0.233 ± 0.017 0.236 ± 0.021 0.286 ± 0.027 0.276 ± 0.020 0.685 ± 0.109 0.678 ± 0.108
0.1 0.304 ± 0.019 0.277 ± 0.021 0.331 ± 0.025 0.324 ± 0.021 0.888 ± 0.178 0.877 ± 0.174

TimeFlow improvement / / 18.97 % 11.87 % 61.88 % 58.41 %

Results. In Table 6, the results show that TimeFlow consistently outperforms other methods in
imputation and forecasting for every scenarios. When comparing with the complete look-back
windows observations scenario from Table 5, one observes that at a 0.5 sampling rate, TimeFlow
presents only a slight reduction in performance, whereas other baseline methods experience more
significant drops. For instance, when we compare forecast results between a complete window and
a τ = 0.5 subsampled window for Electricity with a forecasting horizon of H = 96, TimeFlow’s
error increases by a mere 4.6% (from 0.228 to 0.239). In contrast, DeepTime’s error grows by over
10% (from 0.244 to 0.270), and NP experiences a rise of around 25% (from 0.392 to 0.486). For
lower sampling rates, TimeFlow still delivers correct predictions. Qualitatively, we see on the series
example in Figure 6 that despite observing only 10% of the look-back window, the model can cor-
rectly infer both the complete look-back window and the horizon. Both quantitative and qualitative
results show the robustness and efficiency of TimeFlow on this particularly challenging setting.

F.3 PLOTS COMPARISON: TIMEFLOW VS PATCHTST

Table 5 demonstrates the similar forecasting performance of TimeFlow and PatchTST across all
horizons. To visually represent their predictions, the figures below showcase the forecasted out-
comes of these methods for two samples (24 and 38) and two horizons (96 and 192) on the Electric-
ity, SolarH, and Traffic datasets.

15

Accepted as a Workshop Paper at TS4H@ICLR2024

0.0 0.2 0.4 0.6 0.8 1.0

1

0

1

2

3

4

5

6

Ground truth Imputation Forecast points Observed points

Figure 6: Traffic dataset, sample 95. In this figure, TimeFlow simultaneously imputes and forecasts
at horizon 96 with a 10% partially observed look-back window of length 512.

0.80 0.85 0.90 0.95 1.00

1.5

1.0

0.5

0.0

0.5

Sample : 24 Horizon : 96

0.80 0.85 0.90 0.95 1.00
2

1

0

1

Sample : 38 Horizon : 96

0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00

1.5

1.0

0.5

0.0

0.5

Sample : 24 Horizon : 192

0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00
2

1

0

1

Sample : 38 Horizon : 192

Ground Truth PatchTST TimeFlow

Figure 7: Qualitative comparisons of TimeFlow vs PatchTST on the Electricity dataset for new time
windows

0.80 0.85 0.90 0.95 1.00

0

1

2

Sample : 24 Horizon : 96

0.80 0.85 0.90 0.95 1.00

0

1

2

Sample : 38 Horizon : 96

0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00
1

0

1

2

Sample : 24 Horizon : 192

0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00

0

1

2

Sample : 38 Horizon : 192

Ground Truth PatchTST TimeFlow

Figure 8: Qualitative comparisons of TimeFlow vs PatchTST on the SolarH dataset for new time
windows

16

Accepted as a Workshop Paper at TS4H@ICLR2024

0.80 0.85 0.90 0.95 1.00
1

0

1

2

3

Sample : 24 Horizon : 96

0.80 0.85 0.90 0.95 1.00
1

0

1

2

3
Sample : 38 Horizon : 96

0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00
1

0

1

2

3

Sample : 24 Horizon : 192

0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00
1

0

1

2

3
Sample : 38 Horizon : 192

Ground Truth PatchTST TimeFlow

Figure 9: Qualitative comparisons of TimeFlow vs PatchTST on the Traffic dataset for new time
windows

Results The visual analysis of the figures above reveals that the predictions of TimeFlow and
PatchTST are remarkably similar. For instance, when examining sample 24 and horizon 192 of
the Traffic dataset, both forecasters exhibit similar error patterns. The only noticeable distinction
emerges in the SolarH dataset, where PatchTST tends to overestimate certain peaks.

F.4 MODELS COMPLEXITY

In this section, we present the parameter counts and the inference time for the main forecasting
baselines. Except for TimeFlow and DeepTime, the number of parameters varies with the number
of samples, the look-back window, and the horizon. Thus, we report the number of parameters for
two specific configurations, including a fixed dataset, a fixed look-back window, and a fixed horizon.
In Table 7, we see that for PatchTST and DLinear, the larger the horizon, the more the number
of parameters increases. In Table 8, it is shown that all methods’ computational time increases
with the horizon, which is expected. Moreover, TimeFlow is slower than the baselines that use
forward computations only. Still, on the Electricity dataset, for example, the method can infer for
321 samples a horizon of 720 values with a look-back window of 512 timestamps in less than 0.2s,
which does not look prohibitive for many real-world usages. This is mainly due to the small number
of gradient steps at inference.

Table 7: The number of parameters for main baselines on the forecasting task on the Electricity
dataset for horizons 96 and 720. The look-back window size is 512.

TimeFlow DeepTime Neural Process Patch-TST DLinear Informer Autoformer

96 602k 1 315k 480k 1 194k 98k 984k 1 005k
720 602k 1 315k 480k 6 306k 739k 984k 1 005k

Table 8: Inference time (in seconds) for the forecasting task on the Electricity dataset with horizons
96 and 720 and a look-back window of length 512. The statistics are computed over 10 runs using
an NVIDIA TITAN RTX GPU.

TimeFlow Patch-TST DLinear DeepTime AutoFormer Informer

96 0.147 ± 0.007 0.016 ± 0.002 0.007 ± 0.003 0.006 ± 0.002 0.027 ± 0.001 0.0191 ± 0.002
720 0.176 ± 0.009 0.020 ± 0.001 0.009 ± 0.001 0.010 ± 0.002 0.034± 0.001 0.0251 ± 0.002

F.5 FORECASTING FOR PREVISOULY UNSEEN TIME SERIES

Setting and baseline. As mentioned in Appendix F.1, most forecasters explicitly model the de-
pendencies between samples, which limits their ability to generalize to new time series without

17

Accepted as a Workshop Paper at TS4H@ICLR2024

retraining the entire model. However, TimeFlow, PatchTST, and DeepTime have the advantage of
being reusable for new samples. In Table 9, we present the results of TimeFlow and PatchTST for
new periods, considering both known samples and new samples. We train TimeFlow and PatchTST
on 50 % of the samples and consider the remaining 50 % as the new time series.

Table 9: MAE results over horizon for the forecasting task in the context of generalization to new
time series.

H Known time series New time series

TimeFlow MAE error PatchTST MAE error TimeFlow MAE error PatchTST MAE error

Electricity

96 0.228 ± 0.023 0.211 ± 0.007 0.241 ± 0.023 0.224 ± 0.020
192 0.244 ± 0.022 0.225 ± 0.014 0.254 ± 0.024 0.238 ± 0.024
336 0.269 ± 0.036 0.267 ± 0.019 0.277 ± 0.033 0.285 ±0.005
720 0.331 ± 0.058 0.310 ± 0.026 0.333 ± 0.059 0.331 ± 0.045

Traffic

96 0.226 ± 0.035 0.208 ± 0.036 0.222 ± 0.031 0.203 ± 0.037
192 0.217 ± 0.028 0.202 ± 0.029 0.215 ± 0.026 0.199 ± 0.030
336 0.242 ± 0.036 0.228± 0.041 0.240 ± 0.031 0.224± 0.036
720 0.283 ± 0.053 0.275 ± 0.059 0.283 ± 0.049 0.272± 0.055

SolarH

96 0.237 ± 0.077 0.256 ± 0.055 0.236 ± 0.081 0.256 ± 0.062
192 0.238 ± 0.051 0.251 ± 0.239 0.239 ± 0.058 0.250 ± 0.050
336 0.220 ± 0.027 0.255 ± 0.663 0.220 ± 0.034 0.255 ± 0.066
720 0.240 ± 0.039 0.267 ± 0.062 0.240 ± 0.042 0.267± 0.063

TimeFlow improvement / -1.05 % / -0.39 %

Results Table 9 demonstrates the good adaptability of both methods to new samples, as the differ-
ence in MAE between known and new samples is marginal.

G DISCUSSION ON IMPLEMENTATION CHOICES

As indicated before, adapting the components and enhancing their synergy for the tasks of imputa-
tion and forecasting is not trivial and requires careful choices. We conducted several ablation studies
to provide a comprehensive examination of key implementation choices of our framework.

Our findings can be summarized as follows. Choice of INR: An FFN with Fourier Features outper-
formed other popular INRs for the tasks considered in this study. Unlike SIREN, which does not
explicitly incorporate frequencies but uses sine activation functions, the Fourier features network can
more effectively capture a broader range of frequencies, especially at low sampling rates. This is
crucial for accurately capturing high frequencies in sparsely observed time series. Our experiments,
detailed in Section H.2.1 and Table 10, demonstrate this superiority across various datasets. Choice
of encoding / meta-learning: TimeFlow with a set encoder for learning the compact conditioning
codes z in place of the auto-decoding strategy used here, proved much less effective on complex
datasets. This is further elaborated in Section H.2.4 and Table 17. Additionally, replacing the 2nd-
order optimization for a 1st-order one, such as REPTILE, led to unstable training, as shown in Table
16. Choice of modulations: Complexifying the modulation by introducing scaling parameters in
addition to shift parameters did not provide performance gains. Our experiments on the Electricity
dataset, detailed in Section H.2.5 and Table 18, indicate that shift-only modulation is more efficient.

For TimeFlow, across all experiments, we used a code dimension of 128, an FFN with a depth of 5
and a width of 256, and 64 Fourier features. We used 3 inner steps and a learning rate of 0.01 for
the inner-loop, and a learning rate of 5 × 10−4 for the outer-loop. We performed a comprehensive
analysis to understand notably the influence of the z dimension: a latent code dimension of 128 was
suitable for our tasks; this is supported by results in Section H.2.2 and Table 11 - and the influence of
the number of inner steps: using 3 inner steps for training and inference struck a favorable balance
between reconstruction capabilities and computational efficiency, as detailed in Section H.2.3. and
Tables 12, 13, 14, and 15.

Comparison with other INRs We found that an FFN with Fourier Features was the best per-
forming INR backbone for TimeFlow for time-series reconstruction, imputation and forecasting.
We hypothesize that the FFN with ReLU activations correctly learns the different frequencies of

18

Accepted as a Workshop Paper at TS4H@ICLR2024

time series with multi-temporal patterns by switching on or off the Fourier embedding frequencies.
We conducted a direct comparison with SIREN (Sitzmann et al., 2020) on the imputation task in
Table 10.

TimeFlow with an encoder. We also tested our modulated INR in combination with the set-
encoder from the original neural process architecture. Though this kind of encoder could be lever-
aged to tackle the challenges we aim to address, we found it underfitted the data on complex datasets.
We provide quantitative results for the forecasting task in Table 17.

Comparison of meta-learning algorithms. Several options are possible to tackle the joint opti-
mization of the codes and the common parameters of TimeFlow. We noticed that first-order methods
such as REPTILE Nichol et al. (2018) were experiencing instabilities during training and as a result
were not able to properly fit the data, especially when the number of observation in the temporal
suport was high. Our comparison for the imputation task is presented in Table 16.

Other types of modulations. We found no benefits in using both shift and scale modulations
(Zhou et al., 2022a) compared to shift-only modulations for TimeFlow. Even though it doubles the
number of modulations and therefore increases the computational cost of training and inference, it
does not improve performance. Results on the forecasting task are shown in Table 18.

Number of inner steps and size of latent space. For all datasets and tasks, we use 3 inner-steps
for training the model and 3 inner-steps at inference. We found that it provided a good trade-off
between reconstruction capabilities and computational cost. We do not use more inner-steps at test
time as it does not improve the performance, as shown in Table 12. We set the dimension of the latent
code to 128 for all datasets and tasks. A larger code dimension facilitated training but generalized
well, and a smaller one smoothed the time-series too much.

H ARCHITECTURE DETAILS AND ABLATION STUDIES

H.1 ARCHITECTURE DETAILS

For all imputation and forecasting experiments we choose the following hyperparameters :

• z dimension: 128
• Number of layers: 5
• Hidden layers dimension: 256
• γ(t) ∈ R2×64

• z code learning rate (α in Algorithm 1): 10−2

• Hypernetwork and INR learning rate: 5× 10−4

• Number of steps in inner loop: K = 3
• Number of epochs: 4× 104

• Batch size: 64

It is worth noting that the hyperparameters mentioned above remain consistent across all experi-
ments conducted in the paper. We chose to maintain a fixed set of hyperparameters for our model,
while other imputation and forecasting approaches commonly fine-tune hyperparameters based on
a validation dataset. The obtained results exhibit high robustness across various settings, suggesting
that the selected hyperparameters are already effective in achieving reliable outcomes.

H.2 ABLATION STUDIES

H.2.1 FOURIER FEATURES VS SIREN ON IMPUTATION TASK

Baseline The SIREN network differs from the Fourier features network because it does not ex-
plicitly incorporate frequencies as input. Instead, it is a multi-layer perceptron network that utilizes
sine activation functions. An adjustable parameter, denoted ω0, is multiplied with the input matrices
of the preceding layers to capture a broader range of frequencies. For this comparison, we adopt the

19

Accepted as a Workshop Paper at TS4H@ICLR2024

same hyperparameters described in Appendix H.1, selecting ω0 = 30 to align with Sitzmann et al.
(2020). Furthermore, we set the learning rate of both the hypernetwork and the INR to 5× 10−5 to
enhance training stability. In Table 10, we compare the imputation results obtained by the Fourier
features network and the SIREN network, specifically focusing on the first time window from the
Electricity, Traffic and Solar datasets.

Table 10: MAE imputation errors on the first time window of each dataset. Best results are bold.

τ TimeFlow TimeFlow w SIREN

Electricity

0.05 0.323 0.466
0.10 0.252 0.350
0.20 0.224 0.242
0.30 0.211 0.222
0.50 0.194 0.209

Solar

0.05 0.105 0.114
0.10 0.083 0.094
0.20 0.065 0.079
0.30 0.061 0.072
0.50 0.056 0.066

Traffic

0.05 0.292 0.333
0.10 0.220 0.252
0.20 0.168 0.191
0.30 0.152 0.163
0.50 0.141 0.154

Results According to the results presented in Table 10, the Fourier features network outperforms
the SIREN network in the imputation task on these datasets. Notably, the performance gap between
the two network architectures are more pronounced at low sampling rates. This disparity can be
attributed to the SIREN network’s difficulty in accurately capturing high frequencies when the time
series is sparsely observed. We hypothesize that the MLP with ReLU activations correctly learns the
different frequencies of time series with multi-temporal patterns by switching on or off the Fourier
embedding frequencies.

H.2.2 INFLUENCE OF THE LATENT CODE DIMENSION

The dimension of the latent code z is a crucial parameter in our architecture. If it is too small, it
underfits the timeseries. Consequently, this adversely affects the performance of both the imputation
and forecasting tasks. On the other hand, if the dimension of z is too large, it can lead to overfitting,
hindering the model’s ability to generalize to new data points.

Baselines To investigate the impact of z dimensionality on the performance of TimeFlow, we
conducted experiments on the three considered datasets, specifically focusing on the forecasting
task. We varied the sizes of z within {32, 64, 128, 256}. The other hyperparameters are set as
presented in Appendix H.1. The obtained results for each z dimension are summarized in Table 11.

Table 11: MAE error for different z dimension.

H 32 64 128 256

Electricity

96 0.232 ± 0.016 0.222 ± 0.017 0.222 ± 0.018 0.215 ± 0.019
192 0.245 ± 0.020 0.239 ± 0.018 0.230 ± 0.026 0.233 ± 0.017
336 0.254 ± 0.029 0.244 ± 0.028 0.262 ± 0.031 0.243 ± 0.032
720 0.295 ± 0.027 0.284 ± 0.028 0.303 ± 0.041 0.283 ± 0.029

SolarH

96 0.182 ± 0.009 0.181 ± 0.012 0.179 ± 0.003 0.225 ± 0.047
192 0.195 ± 0.014 0.195 ± 0.016 0.193 ± 0.015 0.197 ± 0.029
336 0.181 ± 0.011 0.182 ± 0.011 0.189 ± 0.013 0.183 ± 0.012
720 0.201 ± 0.027 0.199 ± 0.025 0.209 ± 0.029 0.200 ± 0.030

Traffic

96 0.223 ± 0.024 0.215 ± 0.028 0.215 ± 0.037 0.210 ± 0.033
192 0.214 ± 0.018 0.217 ± 0.025 0.206 ± 0.023 0.203 ± 0.024
336 0.238 ± 0.029 0.231 ± 0.029 0.226 ± 0.030 0.229 ± 0.029
720 0.272 ± 0.040 0.269 ± 0.035 0.259 ± 0.038 0.262 ± 0.040

Results The results presented in Table 11 suggest that a z dimension of 128 is a reasonable com-
promise but only optimal for some settings. Moreover, even though the choice of z dimension seems
important, it doesn’t critically impact the MAE error for the forecasting task.

20

Accepted as a Workshop Paper at TS4H@ICLR2024

H.2.3 INFLUENCE OF THE NUMBER OF GRADIENT STEPS

As can be seen in Table 12, using three gradient steps at inference yield an inference time of less
than 0.2 seconds. The latter can still be reduced by doing only one step at the cost of an increase in
the forecasting error. As observed in Table 12, increasing the number of gradient steps above 3 steps
during inference does not improve forecasting performance.

Table 12: Inference time (in seconds) and MAE error on the forecasting task on the Electricity
dataset for a horizon of length 720, a look-back window of length 512, and a varying number of
adaptation gradient steps. The statistics are computed over 10 runs using an NVIDIA TITAN RTX
GPU.

Gradient descent steps 1 3 10 50 500 5000

Inference time (s) 0.109 ± 0.003 0.176 ± 0.009 0.427 ± 0.031 3.547 ± 0.135 17.722 ± 0.536 189.487 ± 8.060
MAE 0.351 ± 0.038 0.303 ± 0.041 0.300 ± 0.040 0.299 ± 0.039 0.302 ± 0.038 0.308 ± 0.037

Table 13: MAE error on the forecasting task using 1 inner-step during training and a varying number
of adaptation gradient steps at inference. Best results are in bold and / symbol means that the MAE
score is very high (≥ 1).

H 1 3 10 50

Electricity

96 0.244 ± 0.017 0.246 ± 0.017 0.261 ± 0.016 /
192 0.253 ± 0.024 0.253 ± 0.022 0.261 ± 0.020 0.265 ± 0.019
336 0.267 ± 0.032 0.268 ± 0.030 0.277 ± 0.028 0.281 ± 0.027
720 0.302 ± 0.030 0.306 ± 0.029 0.310 ± 0.028 0.301 ± 0.029

SolarH

96 0.192 ± 0.023 0.623 ± 0.397 / /
192 0.175 ± 0.006 0.252 ± 0.068 / /
336 0.192 ± 0.016 0.471 ± 0.029 / /
720 0.216 ± 0.034 0.465 ± 0.063 / 0.550 ± 0.187

Traffic

96 0.215 ± 0.029 0.329 ± 0.039 / /
192 0.208 ± 0.019 0.310 ± 0.033 0.312 ± 0.032 /
336 0.237 ± 0.028 0.307 ± 0.038 / /
720 0.263 ± 0.038 0.320 ± 0.040 / /

Table 14: MAE error on the forecasting task using 3 inner-steps during training and a varying
number of adaptation gradient steps at inference. Best results are in bold.

H 1 3 10 50

Electricity

96 0.259 ± 0.020 0.222 ± 0.018 0.222 ± 0.017 0.228 ± 0.019
192 0.269 ± 0.020 0.230 ± 0.026 0.232 ± 0.020 0.233 ± 0.026
336 0.273 ± 0.033 0.262 ± 0.031 0.264 ± 0.032 0.268 ± 0.032
720 0.351 ± 0.038 0.303 ± 0.041 0.300 ± 0.040 0.299 ± 0.039

SolarH

96 0.487 ± 0.196 0.179 ± 0.003 0.181 ± 0.003 0.186 ± 0.003
192 0.411 ± 0.088 0.193 ± 0.015 0.195 ± 0.014 0.199 ± 0.013
336 0.435 ± 0.153 0.189 ± 0.013 0.203 ± 0.006 0.223 ± 0.012
720 0.394 ± 0.173 0.209 ± 0.029 0.203 ± 0.006 0.209 ± 0.027

Traffic

96 0.320 ± 0.038 0.215 ± 0.037 0.219 ± 0.043 0.226 ± 0.046
192 0.299 ± 0.023 0.206 ± 0.023 0.209 ± 0.026 0.214 ± 0.027
336 0.345 ± 0.038 0.226 ± 0.030 0.228 ± 0.031 0.233 ± 0.032
720 0.321 ± 0.034 0.259 ± 0.038 0.260 ± 0.038 0.266 ± 0.039

Table 15: MAE error on the forecasting task using 10 inner-steps during training and a varying
number of adaptation gradient steps at inference. Best results are in bold.

H 1 3 10 50

Electricity

96 0.381 ± 0.030 0.249 ± 0.024 0.236 ± 0.024 0.238 ± 0.024
192 0.448 ± 0.045 0.273 ± 0.019 0.244 ± 0.014 0.244 ± 0.013
336 0.514 ± 0.053 0.283 ± 0.033 0.241 ± 0.025 0.242 ± 0.024
720 0.647 ± 0.068 0.400 ± 0.051 0.286 ± 0.023 0.287 ± 0.021

SolarH

96 0.605 ± 0.029 0.380 ± 0.018 0.188 ± 0.012 0.199 ± 0.015
192 0.382 ± 0.072 0.250 ± 0.012 0.202 ± 0.034 0.204 ± 0.035
336 0.745 ± 0.105 0.431 ± 0.221 0.201 ± 0.033 0.208 ± 0.032
720 0.745 ± 0.082 0.477 ± 0.039 0.205 ± 0.030 0.205 ± 0.029

Traffic

96 0.450 ± 0.023 0.273 ± 0.026 0.225 ± 0.028 0.230 ± 0.034
192 0.506 ± 0.028 0.318 ± 0.021 0.233 ± 0.022 0.236 ± 0.026
336 0.500 ± 0.042 0.320 ± 0.021 0.247 ± 0.028 0.249 ± 0.031
720 0.511 ± 0.035 0.323 ± 0.022 0.266 ± 0.027 0.272 ± 0.024

21

Accepted as a Workshop Paper at TS4H@ICLR2024

We conduct more extensive experiments in Table 13, Table 14, Table 15 to quantify the MAE score
variation according to different number of gradient steps during training and inference. The tables
show that using the same number of steps in training and inference leads to better results. This is
expected since using different gradient steps for training and inference makes the inference model
slightly different from the training model. In addition, using 3 gradient steps instead of 1 clearly
improves the performances, but using 10 instead of 3 does not. Indeed, it usually leads to overall
better results for longer horizon, but the gain is not clear for smaller horizons. Hence using 3 gradient
steps is a suitable choice.

H.2.4 TIMEFLOW VARIANTS WITH OTHER META-LEARNING TECHNIQUES

Baselines Before converging to the current architecture and optimization of TimeFlow, we ex-
plored different options to condition the INR with the observations. The first one was inspired by the
neural process architecture, which uses a set encoder to transform a set of observations (ti, xti)i∈I
into a latent code z by applying a pooling layer after a feed forward network. We observed that this
encoder in combination with the modulated fourier features network was able to achieve relatively
good results on the forecasting task but suffered of underfitting on more complex datasets such as
Electricity.

This led us to consider auto-decoding methods instead, i.e. encoder-less architectures for condi-
tioning the weights of the coordinate-based network. We trained TimeFlow with the REPTILE
algorithm (Nichol et al., 2018), which is a first-order meta-learning technique that adapts the code in
a few steps of gradient descent. In contrast with a second-order method, we observed that REPTILE
was less costly to train but struggled to escape sub optimal minima, which led to unstable training
and underfitting.

From an implementation point of view, the only difference between second order and first order,
is that in the latter the code is detached from the computation graph before taking the outer-loop
parameter update. When the code is not detached, it remains a function of the common parameters
z = z(θ, w), which means that the computation graph for the outer-loop also includes the inner-loop
updates to the codes. Therefore the outer-loop gradient update involves a gradient through a gradient
and requires an additional backward pass through the INR to compute the Hessian. Please refer to
Finn et al. (2017) for more technical details.

Table 16: Comparison of second-order and first-order (REPTILE) meta learning for TimeFlow on
the imputation task. Mean MAE results on the missing grid over five different time windows. τ
stands for the subsampling rate. Bold results are best.

τ TimeFlow TimeFlow w REPTILE

0.05 0.324 ± 0.013 0.363 ± 0.062
0.10 0.250 ± 0.010 0.343 ± 0.036

Electricity 0.20 0.225 ± 0.008 0.312 ± 0.043
0.30 0.212 ± 0.007 0.308 ± 0.035
0.50 0.194 ± 0.007 0.305 ± 0.046

0.05 0.095 ± 0.015 0.125 ± 0.025
0.10 0.083 ± 0.015 0.123 ± 0.032

Solar 0.20 0.072 ± 0.015 0.108 ± 0.021
0.30 0.061 ± 0.012 0.105 ± 0.027
0.50 0.054 ± 0.013 0.102 ± 0.021

0.05 0.283 ± 0.016 0.304 ± 0.026
0.10 0.211 ± 0.012 0.264 ± 0.009

Traffic 0.20 0.168 ± 0.006 0.242 ± 0.019
0.30 0.151 ± 0.007 0.218 ± 0.020
0.50 0.139 ± 0.007 0.216 ± 0.017

Results In Table 16, we show the performance of first-order TimeFlow on the imputation task. In
low sampling regimes the difference with TimeFlow is less perceptive, but its performance plateaus
when the number of points increases. This is not surprising. Indeed, as though the task is actually
simpler when τ increases, the optimization is made more difficult with the increased number of
observations. We provide the performance of TimeFlow with a set encoder on the Forecasting task
in Table 17. We observed that this version failed to generalize well for complex datasets.

22

Accepted as a Workshop Paper at TS4H@ICLR2024

Table 17: Comparison of optimization-based and set-encoder-based meta learning for TimeFlow on
the forecasting task. Mean MAE forecast results over different time windows. H stands for the
horizon. Bold results are best.

H TimeFlow TimeFlow w set encoder

96 0.228 ± 0.026 0.362 ± 0.032
192 0.238 ± 0.020 0.360 ± 0.028

Electricity 336 0.270 ± 0.031 0.382 ± 0.038
720 0.316 ± 0.055 0.431 ± 0.059

96 0.190 ± 0.013 0.251 ± 0.071
192 0.202 ± 0.020 0.239 ± 0.058

SolarH 336 0.209 ± 0.017 0.235 ± 0.040
720 0.218 ± 0.048 0.231 ± 0.032

96 0.217 ± 0.036 0.276 ± 0.031
192 0.212 ± 0.028 0.281 ± 0.034

Traffic 336 0.238 ± 0.034 0.297 ± 0.042
720 0.279 ± 0.050 0.333 ± 0.048

H.2.5 INFLUENCE OF THE MODULATION

In TimeFlow, we apply shift modulations to the parameters of the INR, i.e. for each layer l we only
modify the biases of the network with an extra bias term ϕ

(j)
l . We generate these bias terms with

a linear hypernetwork that maps the code z(j) to the modulations. The output of the l-th layer of
the modulated INR is thus given by ϕl+1 = ReLU(θlϕl−1 + bl + ψ

(j)
l), where ψ(j)

l = Wlz
(j)

and (Wl)
L
l=1 are parameters of the hypernetwork. However, another common modulation is the

combination of the scale and shift modulation, which leads to the output of the l-th layer of the
modulated INR being given by ϕl+1 = ReLU((Slz

(j))◦(θlϕl−1+bl)+ψ
(j)
l), where ψ(j)

l =Wlz
(j),

and (Wl)
L
l=1 and (Sl)

L
l=1 are parameters of the hypernetwork and ◦ is the Hadamard product.

In Table 18, we conduct additional experiments on the Electricity dataset in the forecasting setting
with different time horizons. In these experiments, we compare two scenarios: one where the INR
is modulated only by a shift factor and the other where the INR is modulated by both a shift and
a scale factor. We kept the architecture and hyperparameters consistent with those described in
Appendix H.1. The experiments shown in Table 18 indicate that the INR is longer to train with
shift and scale modulations due to the increased number of parameters involved. Furthermore, we
observe that the shift and scale modulated INR performed similarly or even worse than the INR with
only shift modulation. These two drawbacks, namely an increased computational time and similar
or worse performances, motivate modulating the INR only by a shift factor.

Table 18: Ablation on modulations for the forecasting task on Electricity dataset for different hori-
zons. Models are trained on a given time window and tested on four new time windows. Models are
trained on a single NVIDIA TITAN RTX GPU.

96 192 336 720

MAE Training time MAE Training time MAE Training time MAE Training time

Shift 0.233 ± 0.014 2h30 0.245 ± 0.016 2h31 0.264 ± 0.020 2h33 0.303 ± 0.041 2h46

Shift and scale 0.257 ± 0.019 3h29 0.263 ± 0.014 3h32 0.268 ± 0.025 3h45 0.308 ± 0.037 4h14

H.2.6 DISCUSSION ON OTHER HYPERPARAMETERS

While the dimension of z is indeed a crucial hyperparameter, it is important to note that other
hyperparameters also play a significant role in the performance of the INR. For example, the number
of layers in the FFN directly affects the ability of the model to fit the time series. In our experiments,
we have observed that using five or more layers yields good performance, and including additional
layers can lead to slight improvements in the generalization settings.

Similarly, the number of frequencies used in the frequency embedding is another important hyper-
parameter. Using too few frequencies can limit the network’s ability to capture patterns, while using
too many frequencies can hinder its ability to generalize accurately.

23

Accepted as a Workshop Paper at TS4H@ICLR2024

The choice of learning rate is critical for achieving stable convergence during training. Therefore,
in practice, we use a low learning rate combined with a cosine annealing scheduler to ensure stable
and effective training.

I DATASETS, SCORES AND NORMALIZATION

For the complete datasets, Electricity dataset is available here, Traffic dataset here and Solar data set
here.

Datasets information The Electricity dataset comprises hourly electricity load curves of 321 cus-
tomers in Portugal, spanning the years 2012 to 2014. The Traffic dataset is composed of hourly
road occupancy rates from 862 locations in San Francisco during 2015 and 2016. Lastly, the Solar
dataset contains measurements of solar power production from 137 photovoltaic plants in Alabama,
recorded at 10-minute intervals in 2006. Additionally, we have created an hourly version, SolarH,
for the sake of consistency in the forecasting section. These datasets exhibit diversity in various
characteristics: • They exhibit diverse temporal frequencies, including daily and weekly season-
ality observed in the Traffic and Electricity datasets, while the Solar dataset possesses only daily
frequency. • There is individual variability across data samples and more pronounced trends in the
Electricity dataset compared to the Traffic and Solar datasets. Table 19 provides a concise overview
of the main information about the datasets used for forecasting and imputation tasks.

Table 19: Summary of datasets information

Dataset name Number of samples Number of time steps Sampling frequency Location Years

Electricity 321 26 304 hourly Portugal 2012− 2014
Traffic 862 17 544 hourly San Francisco bay 2015− 2016
Solar 137 52 560 10 minutes Alabama 2006

SolarH 137 8 760 hourly Alabama 2006

How TimeFlow relative improvement score is computed In many paper tables, the TimeFlow
improvement score appears in the last row of the table. Its purpose is to quantify the average marginal
gain of TimeFlow over the method under consideration. It is computed as follows:

TimeFlow improvement =
1

L

L∑
l=1

sl(baseline)− sl(TimeFlow)

sl(baseline)

• s stands for the Mean Absolute Error score of the considered method against the ground
truth at line l (for instance in Table 1, s1(TimeFlow)= 0.324, s2(TimeFlow)= 0.250 etc).

• L stands for the number of line in the table (for instance 15 in Table 1).

z-normalization To preprocess each dataset, we apply the widely used z-normalization technique
per-sample j on the entire series: x(j)norm = x(j)−mean(x(j))

std(x(j))
.

24

https://archive.ics.uci.edu/dataset/321/electricityloaddiagrams20112014
https://pems.dot.ca.gov/
https://zenodo.org/record/3889974

	Introduction
	The TimeFlow framework
	Problem setting
	Key components
	TimeFlow inference

	Experiments: a focus on imputation
	Conclusion
	Reproductiblity statement
	Related Content
	INR global scheme
	Training and inference algorithms
	Imputation experiments
	Main setting details
	Imputation visual results
	Models complexity
	Imputation for previously unseen time series
	Details on DeepTime adaptation for imputation
	Imputation against non deep learning methods

	Forecasting experiments
	Classical forecasting
	Forecasting on new periods for unknown samples with missing values

	Challenging task: Forecast while imputing incomplete look-back windows
	Plots comparison: TimeFlow vs PatchTST
	Models complexity
	Forecasting for previsouly unseen time series

	Discussion on implementation choices
	Architecture details and ablation studies
	Architecture details
	Ablation studies
	Fourier features vs SIREN on imputation task
	Influence of the latent code dimension
	Influence of the number of gradient steps
	TimeFlow variants with other meta-learning techniques
	Influence of the modulation
	Discussion on other hyperparameters

	Datasets, scores and normalization

