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Abstract— In this paper, we propose a new ap-
proach of indexing trajectories to efficiently distin-
guish abnormal behaviors from normal ones. After
a discretization step, trajectories are considered as
sets of triplets (location, velocity, direction). Those
triplets are seen as words and a multinomial modeling
is learned to estimate the probability of each word.
The originality of our work consists in computing
the likelihood of all measures and aggregating them
by trajectories and spatial cells. The achieved rep-
resentation is light and offers new opportunities to
request normal or abnormal behaviors. The interest
of our approach is demonstrated on a plane trajectory
dataset provided by Paris-Charles de Gaulle airport.
Several experiments are carried out to promote the
proposed likelihood descriptors; in particular, exper-
iments show how to extract easily relevant specific
trajectories. A t-SNE diagram is also presented to
achieve an overall discriminative representation of the
whole dataset.
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I. Introduction
This article aims at proposing a new approach to tackle

efficiently trajectory datasets. In our modern connected
world, more and more spatiotemporal data are collected:
people get equipped with smartphones, smartwatchs,
and soon, smartcars. Therefore, exploiting those datasets
efficiently and bringing added value to the users has
become a leading issue. Namely, we aim at handling and
browsing existing traces, then at understanding them.
Multiple challenges are already identified, ranging from
sequence categorization [1] or traffic modeling [2] to
anomaly detection [3] and safety improvement [4].

This paper concerns a specific task: monitoring airport
planes when they drive on the tarmac, specifically when
they can be seen as vehicles. Airport authorities have two
main concerns: safety aspects and performance optimiza-
tion. Fortunately, incidents are rare, but each of those
situations have to be understood in depth to prevent
new occurrences. Thus, a main interest lies in browsing
all situations close to a given incident, which requires
a relevant indexing of the trajectories. Another classical
use-case arises when a safety patrol notices an anomaly
in the field; in this case, it is mandatory to check what
happened in the past hours on a particular point of the
map. This corresponds to an IR (Information Retrieval)
problem which requires efficient indexing. A last use-case
concerns performance issues and an efficient approach
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to understand reasons of a traffic jam. In a nutshell,
we propose in this work a tool to mine efficiently a big
dataset of trajectories which are complex and structured
objects.

Fig. 1. Two sets of trajectories associated to standard spatial
queries; All trajectories cross the northwestern tile, then red ones
are continuing towards the northern runway while blue ones pro-
ceed to the southern runway.

Trajectory indexing is a well known task where con-
tributions are numerous [5], [6], [7]. However our con-
cern is two folds: firstly, computing similarities between
trajectories or between trajectories and queries; then,
being able to distinguish normal and abnormal situations
efficiently. In that sense, the philosophy of our work
is close to [8] who proposed to discover spatial, speed
and directional pattern in the series. The first step of
the proposed approach is to discretize the space and to
estimate direction and speed of planes for each radar echo
of the dataset. For efficiency reasons, we discard chaining
information and rely only on the computed direction
at each point of the trajectory. The extracted triplets
(location, velocity, direction) are considered as words
and exploit the bag of words formalism. An example of
word based query is provided in Fig 1. The originality
of our approach consists in addressing the question of
normality: we aim at discovering what distinguishes a
likely movement from another less common move. We
would like to consider the likelihood as a central point of
the indexing process: probabilistic models are often used
inside categorization algorithms [9], however, the idea
here is to use them as trajectory descriptors. We learn a
multinomial modeling to estimate the probability of each
word. Afterwards, the likelihood of all measurements
is computed and aggregated by trajectories and spatial
cell. Using such a Bayesian indexing strategy enables us
to face efficiently a new kind of semantic request, for



instance: finding all trajectories crossing this area with a
weak likelihood.

After a brief discussion on related works (section II),
section III describes our modeling in depth. Section IV
shows the relevance of our approach by analyzing the
results associated to classical and more original queries.
The categorization ability of our trajectory description
is also illustrated using t-SNE [10] to propose an overall
view of the dataset.

II. Related Work

In order to handle trajectories efficiently, we investi-
gate two bibliography axis: light trajectory representa-
tions on the one hand, to be able to compute requests
on real world dataset, and similarity measures between
trajectories on the other hand, which is critical for both
trajectory mining and categorization applications. Those
topics are closely related since similarity largely depends
on the representation choice. Generally speaking, com-
paring two structured objects of different sizes, for in-
stance two randomly picked trajectories, is a challenging
task.

First of all, lets consider the indexing task which is
crucial to perform relevant request in a big trajectory
dataset. Theoretical foundations relied on an efficient
space discretization as R-Tree [5]. Then, several adap-
tations have been proposed like TB-Tree [11] or 3D-R-
tree [12]. [11] distinguished two types of spatiotemporal
queries : coordinate-based queries which were local and
can be enriched with a timing or contextual precisions
and trajectory-based queries which involved the whole
topology. Both are required in our work.

It rapidly became clear that the noise in the loca-
tion measurement was a big issue. One solution was
to cluster trajectories in order to introduce a meaning
in the groups. Early spatial data mining algorithm like
DBSCAN [13] or STING [14] focused on static localized
entities. DBSCAN, as many other proposal from the 90’,
was not really dedicated to spatial data mining, it was
simply applied on 2D datasets that could be geograph-
ical coordinates. STING was more interesting from our
applicative point of view as it proposed a global solution
including a geographical description based hierarchical
discrete structure, a fast clustering algorithm and some
request examples. Several metrics were really dedicated
to measure sequence similarities like Dynamic Time
Warping (DTW) [15] but they could hardly scale up.
Edit Distance on Real sequences (EDR) [16] was applied
on large datasets, but it required a huge computing
grid. More recent approaches dealt with sequences and
proposed specific focus on time aspects in TF-OPTICS
algorithm [17] or on speed and directional patterns in
addition to locations [8].

Another way of handling and understanding trajecto-
ries was to consider them as a set of meaningful subparts.
Thus, the challenge became two folds: first, segmenting

trajectories, then matching the parts. From this perspec-
tive, Longest Common SubSequence algorithm (LCSS)
[18] focused on an hybrid criterion assuming that the
matching score was directly linked to the segmentation.
Map-matching algorithms [19] could be seen as a tra-
jectory similarity measurement tool in the particular
case where an expert provided a reliable map. Then,
computations were focused on the mapping task and
required a Viterbi-like dynamic programming algorithm.
The matching step became trivial as all segments be-
longed to a discrete finite set (that is often of limited
size). In the general case, more attention was given to
the space dividing process [20]. TRACLUS algorithm
[21] insisted on the interest of learning segmentation and
matching at the same time to bring to light common
patterns shared by many trajectories. [22] shared the
same philosophy but introduced a distance between full
trajectories as a global learning criterion.

In order to take into account chaining in trajectories,
several strategies arose in the literature. Indexing task
was tackle by referencing successive position in a discrete
geographical grid [6]. Regarding trajectories extracted
from video flow, Markovian models were often used to
estimate the transition probabilities [23]. Modeling tran-
sitions was also a way to switch to predictive applications
[24].

III. Bayesian modeling
Lets denote our raw trajectory dataset D =

{T1, T2, . . . , TN}, each trajectory Tk being a set of time-
stamped 2 dimensional positions (t ∈ R, ` ∈ R2) sampled
at a regular frequency.

Tk = {c, (t1, `1, . . . , t|Tk|, `|Tk|)} (1)

Each trajectory is associated to contextual information
c giving the type of the aircraft, the name of the com-
pany, the nature of the move (take off, landing...), the
configuration of the airport. We will exploit those pieces
of information as a supervision to analyze our results
in the experimental section. In our approach, we choose
to discard time information and to consider only the
computed direction and speed to model the motion as it
is done in certain task of [8]. However, we model the joint
distribution between location, velocity and direction in-
stead of considering the marginal laws. Our hypothesis is
the following: at a point of the trajectory, if we know the
triplet (location, velocity, direction), the next position
becomes obvious and we can assume that the transition
is already described.

A. Discretization & Bag of Words
After preliminary experiments and expert feedbacks,

direction is discretized in 8 categories (using clas-
sical compass intervals) and velocity in 6 intervals
[0, 3[, [3, 12[, [12, 20[, [20, 30[, [30, 60[, [60,+[ in ms−1.
A 30×30 spatial grid is used and areas with no activities
are discarded: S = 339 spatial tiles are remaining which



leads to Z = 6 × 8 × 339 = 16272 discrete cells. A
first discrete trajectory representation is obtained by
considering each one of those cells as a word (cf Fig 2):
Tk = {c†,w} where w ∈ NZ is a fix-size integer vector
counting the number of occurrences of each word, i.e.,
the number of measurements of the trajectory assigned
to each cell of the discrete space. Consistency from
one trajectory to another is guaranteed by the constant
sampling frequency over the whole dataset1; thus, each
measure point corresponds the same information weight.
We slightly modified the contextual information vector
c† by adding the departure time of the trajectory and
its duration. As it is classically done in text mining,
we switch to a frequency representation to improve the
comparability of different trajectories. Let wf

i = wi∑
j

wj
∈

R+ denote the frequency of word i in the trajectory.
Thus, each frequency vector wf sums to one. We some-
times add a (k) exponent to the word when there is an
ambiguity about the trajectory the word belongs to. As
said earlier, a word corresponds to a triplet location,
velocity, direction (`, v, d) and the notation {j|` ∈ wj}
is used to address the set of word indexes corresponding
to the spatial tile `.

Fig. 2. Discrete joint distribution over location, velocity and
direction (`, v, d). High values (red) correspond to common observa-
tions while low values (blue) denotes unlikely situations. The model
includes Z = 16272 cells.

B. Likelihood descriptors
In order to enrich the trajectory Tk, we propose to

consider likelihood descriptors in the following manner.
Mapping all trajectories to the Z dimensional space leads
to estimate the joint distribution of location, velocity and
direction, as illustrated on Fig 2. Hence, a multinomial
model M is learned and the parameters are gathered in
a vector:

Θ =


...

θi = p(wi|`)
...

 , p(wi|`) =
∑

k w
(k)
i∑

k

∑
{j|`∈wj}

w
(k)
j

(2)

So as to facilitate interpretation and prevent numerical
troubles with low real values, we actually compute the
conditional distribution with respect to the location `.

1A 3Hz sampling frequency is considered in the following.

In practice, M enables us to compute the likelihood
of each trajectory point. Assuming a (naive) indepen-
dence between measures, a trajectory likelihood can be
computed. However it is well known that such a compu-
tation will greatly depends on the trajectory length and
thus prevent any relevant comparison between sequences.
As a consequence, we choose to compute a normalized
local likelihood L for each spatial cell ` crossed by the
trajectory k:

L̄k
` =

∑
{i|`∈wi}

w
(k)
i θi∑

{i|`∈wi}

w
(k)
i

× 1
max
{i|`∈wi}

θi
(3)

Likelihoods of positions are averaged inside each area `
and divided by the maximum parameter of the region.
This latter operation corresponds to a rough normaliza-
tion regarding the entropy of the spatial cell: some cells
are concentrated namely they contain few high proba-
bilities and a lot of zeros whereas others, with higher
entropy, contain many low probabilities. Our concern is
to be able to compare the likelihoods of two trajectories
crossing two different cells. The full representation of the
trajectory is thus:

Tk = {c†,wf ∈ RZ
+, L̄ ∈ RS

+} (4)

C. Queries
As in [11], two types of queries are investigated:

content-based queries and sample-based queries. For the
formers, our full representation is exploited. A particular
context can be selected (take off from a given runway
for instance); a spatial query consists then in selecting
the words corresponding to an area (and optionally to a
specified speed and/or direction). Finally, the query can
specify if a standard scenario or unusual situations at a
given location is sought.

The second use-case corresponds to sample-based
queries. In this situation, a k-nearest neighbors search
around the requested trajectory is perfomed using an
Euclidian distance to rank the neighbors. The coefficients
wf are always exploited which enables us to return a
group of trajectories that present close shapes. But on
top of that, one can chose to activate L̄ descriptors
to select trajectories presenting the same normality or
abnormality at different points.

IV. Experiments
This section presents a proof of concept around tra-

jectory mining with our new light indexing technique.
All experiments have been conducted on 15 days dataset
provided by Paris-Charles de Gaulle airport, including
5 716 plane trajectories produced by the Secondary
Surveillance RADAR (SSR) which also collects plane
transponders’ informations.

First, basic experiments are considered to validate our
representation based on the joint space location, velocity,



direction. Then the interest of the likelihood descriptors
is illustrated in another series of experiments. In order
to promote our approach we also carry out a prelimi-
nary experiment to extract abnormal long trajectories,
considered as being late.

A. Preliminary experiment on long trajectories
We investigate a simple model to extract trajectories

that are longer than usual. We adopt a two-stage ap-
proach: first, trajectory start points are clustered accord-
ing to their positions; then, we compute the distribution
of taxiing duration and the trajectories corresponding to
the highest decile are extracted as illustrated on Fig 3.
By checking where long trajectories appear in our query
answers will allow to provide qualitative analysis of our
work. On top of that, we will focus on the likelihood
of such trajectories to try to bring to light congestion
precursors.

Fig. 3. Start point categorization and taxiing time distribution
for each cluster. We consider the trajectories corresponding to the
highest decile as being late for each of the 12 clusters.

B. Validation of joint space representation
Our first experiments are illustrated on Fig 1, they

correspond to 2 standard spatial queries based on words
associated to 2 couples of geographical tiles. We check
that we obtain relevant results. Disabling one criterion
is equivalent to summing different columns of the repre-
sentations. For instance Fig 4 illustrates the differences
between 2 query answers on the same region, respectively
with and without the direction criterion.

Fig. 4. Result of 2 queries on the same region with (left) or without
(right) direction information

Then we move to one of the sample-queries which
aim at extracting the nearest neighbors of a targeted
situation. Fig 5 illustrates a 3 nearest neighbors search.
At first sight, it seems that all trajectories are identical;
however zooming on the departure point shows that all
trajectories are close but separate. It also exhibits the
noise in position measurement, especially at low speed
conditions. Spatial discretization is a way to tackle this
problem efficiently.

Fig. 5. The red sample is used as a query. 3 nearest neighbors are
plotted in blue. The zoom show the noise in the original trajectories,
especially in the low speed context, for instance, when planes leave
their parking.

Another experiment based on t-SNE [10] is proposed
to achieve a global vision of the trajectory dataset. In
order to reduce time computation, the spatial cells are
aggregated by groups of 9; hence, a 10×10 grid is used for
this experiment. The dimension of the dataset is reduced
to 2; this leads to a picture where each point corresponds
to a trajectory. Trajectories form several separate groups
but they are hard to interpret. As a consequence, we
conduct a second series of experiments: we focus on take
off and use a color code to distinguish the 4 airport
runways (Fig 6). We note that groups are nearly perfectly
homogeneous, only few outliers remain and it will be
interesting to analyze them with experts.

Finally, we exploit the results from section IV-A to
map long trajectories on the figure (black circled points):
most of those particular trajectories are gathered (espe-
cially in the yellow, magenta and green cases). In depth
analyses of the magenta cluster, presented in Fig 7, show
that the two lobes of the magenta main group correspond
to different situations: the left lobe (blue trajectories)
matches with northern parking and associated path while
the right lobe (red trajectories) matches with southern
parkings. Even better, 2 magenta outliers correspond, in
fact, to long trajectories. Taking a closer look at this
situation, we understand that outliers wait (a long time)
at a singular point of the runway entrance (Fig 8): in
our representation wf , those regions corresponds to the
highest values. In conclusion our discrete representation
seems well adapted to perform an efficient trajectory
categorization.



Fig. 6. Visualization with t-sne algorithm of take-off trajectories.
Colors correspond to the 4 airport runways. Circled points depict
long trajectories extracted in section IV-A.

Fig. 7. In depth analyse of the magenta cluster (Fig 6): trajectories
from the left (blue) and right (red) part of the main group.

C. Likelihood descriptors
The previous series of experiments (section IV-B)

highlight an important requirement: recognizing what is
normal or not. As explain in section III-B, a multinomial
distribution is learned and specific descriptors are built
(one by trajectory and by area): what appends regularly
is considered as normal and unusual situations as abnor-
mal. The asset of this rich representation (eq. 4) is to
provide a new query opportunity, like what trajectories
are abnormal in area `? For instance, Fig 9 focuses
on abnormal behavior at the northern take off runway
waiting point: not surprisingly, all resulting trajectories
correspond to long ones (according to experiment IV-A).

Two trajectories can also be compared from the spatial
likelihood point of view as shown on Fig 10. Accord-

Fig. 8. Late trajectories of the magenta cluster (Fig 6): main group
(blue) vs outliers (red). The difference comes from the highlighted
tiles. Waiting point at the runway entrance is not the same.

Fig. 9. Results of a query regarding trajectories with low likelihood
at the waiting point of the northern take off runway.

ing to wf descriptors, those trajectories are very close,
but adding likelihood information make them distinct;
indeed, the first situation presents a strong likelihood
drop when the plane drive by terminal 1 (the big round
parking structure). In this way, our original description
can distinguish situations that would have been merged
by a classical spatial query.

Fig. 10. Spatial likelihood of the two trajectories that are very
close according to wf . The speed profile of those trajectories is
analyzed on Figure 11(c). Likelihood above 0.55 are colored in red.

We propose to push the analysis further and we study
the velocity likelihood profiles of close spatial trajecto-
ries. In Fig 11, 2 areas are considered and specific queries
are built to bring to light low likelihood trajectories
respectively associated to low velocity and excessive
speed. The evolution of the velocity with respect to
time is plotted, bolding the measures corresponding to
the requested region: we note that velocities behave
as expected, being respectively lower or higher than
mainstream signals when the likelihood drops. Thus, the
proposed indexing strategy allows to build rich semantic
queries: the concept of excessive speed is automatically
learned without any prior, it depends on the usual be-
havior in a particular region.

V. Conclusion
We propose in the article a new way of indexing

trajectories to bring to light efficiently what is normal or
not. This indexing is based on the discretization of the
physical space and the estimation of direction and speed
of planes in each discrete spatial cell for each radar echo



(a) Two trajectory sets corresponding
to 4 queries: (1) red region, (2) red
region AND abnormally low velocity
(3) blue region, (4) blue region AND
abnormally high velocity.

(b) Speed wrt to time for the red tra-
jectories of (a). Normal taxiing = green,
abnormal = blue. Red bold section of
the curves correspond to the highlighted
area: low velocity is associated to low
likelihood and long trajectories.

(c) Speed wrt to time for the blue
trajectories of (a). Normal taxiing =
green, abnormal = blue. Red bold sec-
tion of the curves correspond to the
highlighted area: excessive speed is
associated to low likelihood.

Fig. 11. Velocity profiles of normal vs abnormal trajectories.

of the dataset; those measures are considered as words
corresponding to triplets (location, velocity, direction);
finally, a multinomial probabilistic model is learned by
counting words appearing in trajectories. The originality
of our work consists in computing the likelihood of all
measures and aggregating them by spatial cell for every
trajectories. Thus, a light representation is obtained
offering new opportunities to request normal or abnormal
behaviors.

We demonstrate the interest of our approach on vari-
ous use cases, including a t-SNE diagram that proposes
an overall discriminative representation of the whole
dataset.
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