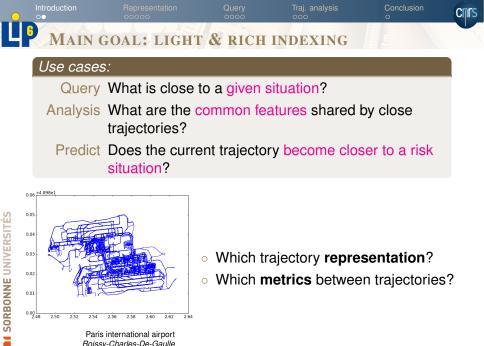
Trajectory Bayesian Indexing : The Airport Ground Traffic Case

Cynthia Delauney, Nicolas Baskiotis and Vincent Guigue

IEEE 19th International Conference on Intelligent Transportation Systems Rio de Janeiro, Brazil

November 2nd, 2016

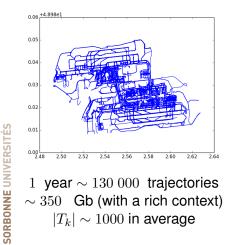
Trace = set of measures (id, time, location, *contextual info*)

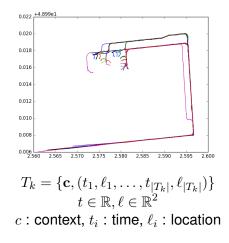


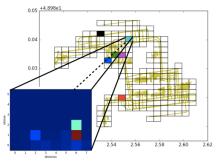
Issues :

- Clustering/categorization [Jiang et al. 08]
- Anomaly detection [Bu et al. 09]
- Indexing [Guttman et al. 84, Chakka et al. 03, Zheng et al. 11]

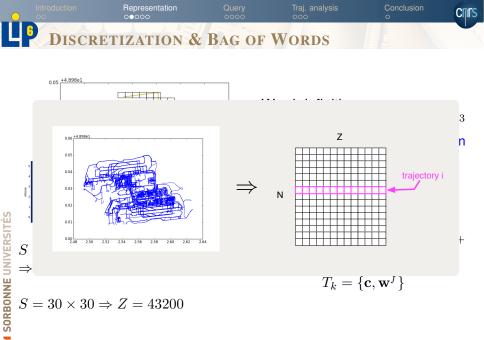
Challenges :


- Variable size
- Noise(s)
- Data amount


Vincent Guique


Whole dataset:

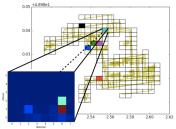
Trajectory samples:



 $S \times 6$ velocites $\times 8$ directions \Rightarrow Fixed dimensions Z

 $S = 30 \times 30 \Rightarrow Z = 43200$

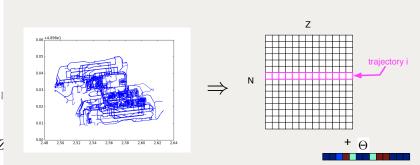
Word definition: $w_i = (\ell, v, d) \in \mathbb{N}^3$ location, velocity, direction $T_k = \{\mathbf{c}, \mathbf{w}\}, \quad \mathbf{w} \in \mathbb{N}^Z$ Frequency normalization: $w_i \Rightarrow w_i^f = \frac{w_i}{\sum_j w_j} \in \mathbb{R}_+$ $\downarrow^{} T_k = \{\mathbf{c}, \mathbf{w}^f\}$


Vincent Guigue

$$S = 30 \times 30 \Rightarrow Z = 43200$$

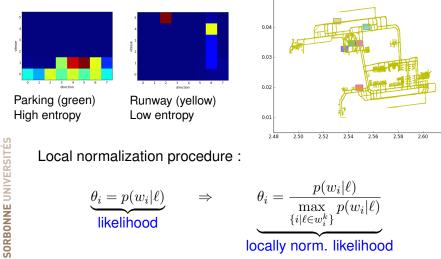
Vincent Guique

Z = 43200


Multinomial model:

$$\Theta = \left[\begin{array}{c} \vdots \\ \theta_i = p(w_i | \ell) \\ \vdots \end{array} \right] \in \mathbb{R}^Z$$

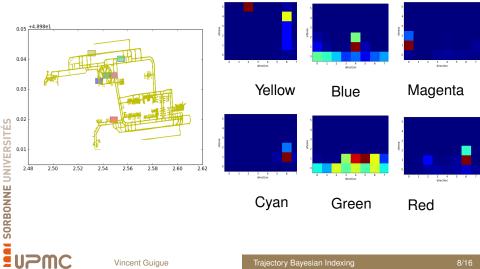
$$p(w_i|\ell) = \frac{\sum_k w_i^{(k)}}{\sum_k \sum_{\{j|\ell \in w_j\}} w_j^{(k)}}$$


Multinomial model

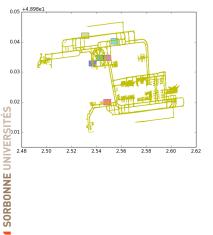
Vincent Guigue

Representation CINIS 00000 NTROPY ISSUE : A NORMALIZATION IS REQUIERED

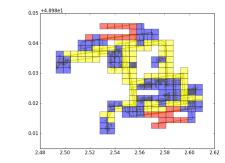
> +4.898e1 0.05


 $\theta_i = p(w_i|\ell)$ likelihood

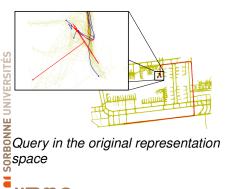
$$\theta_{i} = \frac{p(w_{i}|\ell)}{\max_{\{i|\ell \in w_{i}^{k}\}} p(w_{i}|\ell)}$$


Vincent Guigue

2.62

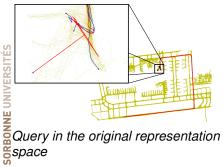


Spatial caracterization:

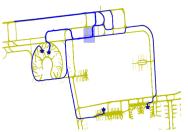

Vincent Guigue

JUSWC

Simple framework:

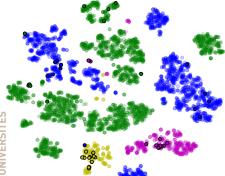

- Query : 1 trajectory
- Answers : k(= 3) Nearest
 Neighbors (Euclidian distance)

Simple framework:


- Query: 1 trajectory
- Answers : k(=3) Nearest Neighbors (Euclidian distance)

Smart query:

- Query = region ℓ (all velocit./dir.)
- Sorted answers:


4 Lowest likelihood

Query in representation space + likelihood

1 dot = 1 (take-off) trajectory

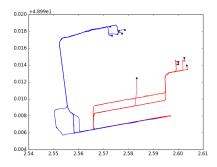
- Unsupervised learning... difficult to evaluate
- Colors =
- airport configurations
- 4 runways
- East or west direction


 \Rightarrow Clear latent space division

T-SNE projection (2D)

Vincent Guigue

1 dot = 1 (take-off) trajectory

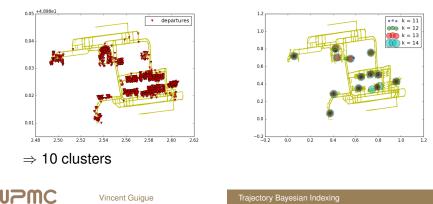


T-SNE projection (2D)

Fine analysis of the

magenta cluster:

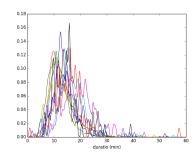
- left sub-cluster
- right sub-cluster 0

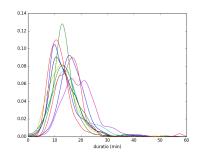

Vincent Guique

Protocol:

SORBONNE UNIVERSITÉS

Clustering of the parkings

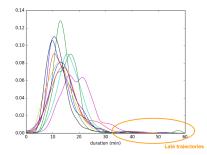



Protocol :

- Clustering of the parkings
- 2 Taxiing duration pdf estimate

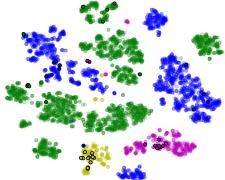
Raw estimate

Smoothed estimate (Parzen)


AL SORBONNE UNIVERSITÉS

Protocol :

- Clustering of the parkings
- 2 Taxiing duration pdf estimate
- 3 Late = last percentile


Smoothed estimate (Parzen) + last percentiles of each cluster

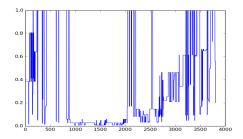
DI SORBONNE UNIVERSITÉS

Circled dot = late trajectory

We detect some regularities in late trajectories

Outliers (often) correspond to late trajectories

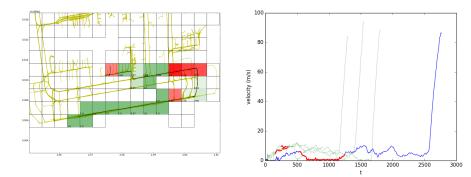
T-SNE projection (2D)


And Sorbonne Universités

(Re-)introducing **time** in the analysis: Trajectory = series of words \Rightarrow series of likelihoods

 $T = \{w_{t_1}, \dots, w_{t_{|T|}}\} \Rightarrow \{\mathcal{L}(w_{t_1}), \dots, \mathcal{L}(w_{t_{|T|}})\}$

Likelihood course of a late trajectory:


DI SORBONNE UNIVERSITÉS

Spatial mapping

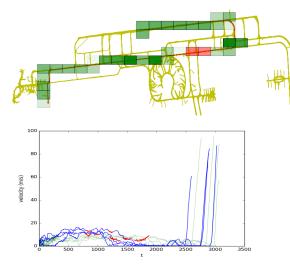
SORBONNE UNIVERSITÉS

Velocity mapping

The plane had an abnormal **low** velocity in 3 spatial tiles of the grid

Vincent Guigue

Trajectory Bayesian Indexing



Finding trajectories with:

anomaly in the region ℓ & velocity > ML velocity

I SORBONNE UNIVERSITÉS

'INC

Vincent Guigue

Conclusion CINIS **CONCLUSION & PERSPECTIVES**

Conclusion

- Very light way to index trajectories
- Consistent
- (Local) likelihood
- Many possible coding (presence, frequency, tf-idf...)

inspired from text indexing

Perspectives

SORBONNE UNIVERSITÉS

- Indexing \Rightarrow categorization with **continuous modeling** (neural network)
- Identifying precursory events of abnormal situations
- Trajectory \Rightarrow **Situation** (multiple vehicles)

bigram?

Many thanks to AWACS FUI Grant partners: SafetyLine, IFSTTAR, ADP Trajectory Bayesian Indexing