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CONTEXT: SPATIO-TEMPORAL SERIES ANALYSIS

Trace = set of measures (id, time, location, contextual info)

Issues :

◦ Clustering/categorization [Jiang et al. 08]

◦ Anomaly detection [Bu et al. 09]

◦ Indexing [Guttman et al. 84, Chakka et
al. 03, Zheng et al. 11]

Challenges :

◦ Variable size

◦ Noise(s)

◦ Data amount
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MAIN GOAL: LIGHT & RICH INDEXING

Use cases:
Query What is close to a given situation?

Analysis What are the common features shared by close
trajectories?

Predict Does the current trajectory become closer to a risk
situation?

Paris international airport
Roissy-Charles-De-Gaulle

◦ Which trajectory representation?
◦ Which metrics between trajectories?
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RAW DATA

Whole dataset:

1 year ∼ 130 000 trajectories
∼ 350 Gb (with a rich context)
|Tk| ∼ 1000 in average

Trajectory samples:

Tk = {c, (t1, `1, . . . , t|Tk|, `|Tk|)}
t ∈ R, ` ∈ R2

c : context, ti : time, `i : location
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DISCRETIZATION & BAG OF WORDS

S × 6 velocites ×8 directions
⇒ Fixed dimensions Z

S = 30× 30⇒ Z = 43200

Word definition:
wi = (`, v, d) ∈ N3

location, velocity, direction
↓

Tk = {c,w}, w ∈ NZ

↓
Frequency normalization:

wi ⇒ wf
i =

wi∑
j wj

∈ R+

↓
Tk = {c,wf}
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NAIVE BAYES MODELING

Z = 43200

Multinomial model:

Θ =




...
θi = p(wi|`)

...


 ∈ RZ

p(wi|`) =

∑
k w

(k)
i∑

k

∑

{j|`∈wj}
w

(k)
j
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NAIVE BAYES MODELING

Z = 43200

Multinomial model:

⇥ =

2
664

...
✓i = p(wi|`)

...

3
775 2 RZ

p(wi|`) =

P
k w

(k)
iX

k

X

{j|`2wj}
w

(k)
j
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ENTROPY ISSUE : A NORMALIZATION IS REQUIERED

Parking (green)
High entropy

Runway (yellow)
Low entropy

Local normalization procedure :

θi = p(wi|`)︸ ︷︷ ︸
likelihood

⇒ θi =
p(wi|`)

max
{i|`∈wk

i }
p(wi|`)

︸ ︷︷ ︸
locally norm. likelihood
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LOCAL BEHAVIOR DESCRIPTIONS

Yellow

Cyan

Blue

Green

Magenta

Red
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LOCAL BEHAVIOR DESCRIPTIONS

⇒

Spatial caracterization:
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QUERY EXAMPLES

Simple framework:

◦ Query : 1 trajectory

◦ Answers : k(= 3) Nearest
Neighbors (Euclidian distance)

Query in the original representation
space

Smart query:

◦ Query = region ` (all velocit./dir.)

◦ Sorted answers:
4 Lowest likelihood

Query in representation space +
likelihood
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CONSISTENCY OF THE REPRESENTATIONS

1 dot = 1 (take-off) trajectory

T-SNE projection (2D)

◦ Unsupervised learning...
difficult to evaluate

◦ Colors =
airport configurations

- 4 runways
- East or west direction

⇒ Clear latent space division
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CONSISTENCY OF THE REPRESENTATIONS

1 dot = 1 (take-off) trajectory

T-SNE projection (2D)

Fine analysis of the
magenta cluster:

◦ left sub-cluster
◦ right sub-cluster
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[PARALLEL EXP.] FINDING LATE TRAJECTORIES

Protocol :
1 Clustering of the parkings

2 Taxiing duration pdf estimate
3 Late = last percentile

⇒ 10 clusters
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[PARALLEL EXP.] FINDING LATE TRAJECTORIES

Protocol :
1 Clustering of the parkings
2 Taxiing duration pdf estimate

3 Late = last percentile

Raw estimate Smoothed estimate (Parzen)
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[PARALLEL EXP.] FINDING LATE TRAJECTORIES

Protocol :
1 Clustering of the parkings
2 Taxiing duration pdf estimate
3 Late = last percentile

Smoothed estimate (Parzen) + last percentiles of each cluster
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LATENESS TOPOLOGY

Circled dot = late trajectory

T-SNE projection (2D)

We detect some regularities in
late trajectories

Outliers (often) correspond to
late trajectories
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SINGLE TRAJECTORY LIKELIHOOD

(Re-)introducing time in the analysis:
Trajectory = series of words⇒ series of likelihoods

T = {wt1 , . . . , wt|T |} ⇒ {L(wt1), . . . ,L(wt|T |)}

Likelihood course of a late trajectory:

Vincent Guigue Trajectory Bayesian Indexing 13/16



Introduction Representation Query Traj. analysis Conclusion

SINGLE TRAJECTORY LIKELIHOOD

Spatial mapping Velocity mapping

The plane had an abnormal low velocity in 3 spatial tiles of the
grid
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SMART QUERY

Finding trajectories with:

anomaly in the region `
& velocity > ML velocity
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CONCLUSION & PERSPECTIVES

Conclusion
◦ Very light way to index trajectories
◦ Consistent
◦ (Local) likelihood
◦ Many possible coding (presence, frequency, tf-idf...)

inspired from text indexing

Perspectives
◦ Indexing⇒ categorization with continuous modeling

(neural network)
◦ Identifying precursory events of abnormal situations
◦ Trajectory⇒ Situation (multiple vehicles)

bigram?

Many thanks to AWACS FUI Grant partners: SafetyLine, IFSTTAR, ADP
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