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Abstract— In the 20th century, most mobility stud-
ies were based on costly surveys with few samples;
nowadays, the data from static and mobile sensors
allow to track the habits of a massive number of
citizens. However, the counterpart of sensors data is
that they generally provide noisy and partial signals
lacking semantic information: the purpose of each
human activity captured by the sensor is unknown.
Extracting this latent semantic information from raw
sensors data is a challenging and crucial task. In
this paper, a novel algorithm based on non negative
matrix factorization (NMF) is proposed in order to
extract precise and meaningful user temporal profiles
from logs of smart card data in a transportation
system. The proposed NMF based algorithm allows
a natural and informative clustering of the profiles
which can lead to semantic information on the mo-
bility of the users. The approach is compared to 4
others algorithms and focuses on the human scale,
indeed, individual profiles differ quite substantially
from group profiles. Experiments are conducted on a
3 months dataset supplied by the STIF, the Parisian
public transport authority.

I. Introduction
Over the last decade, sensors data have been widely

used in mobility studies. The growing availability of
data, covering more and more urban spaces, led to
major results (regarding the regularity of human mobil-
ity for instance [1], [2]). Other researches characterized
the dynamics of the urban space: inference of Origin-
Destination matrices for bike sharing networks [3], for
road networks [4], or congestion detection [5]. All those
studies aggregate individual information to model the
average behavior of the population. However, zooming
in on the behavior of a particular citizen with respect to
the general model generally leads to generic information:
the lack of semantics, the high level of noise in raw data
and the excessive smoothing associated to the global
averaging delete most fine level information. Thus, it is
difficult to build a relevant analysis at both the individual
and system levels. In this paper, this issue is tackled with
an original approach consisting in extracting patterns
at the population level for robustness (namely finding
patterns or habits shared by large groups of users) and
positioning those patterns at the individual scale to
preserve a fine modeling.

We focus in this paper on data provided by smart card
data of the French Parisian public transportation system
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Fig. 1. Probability density functions of check-in for 2 users
and the whole population. At the population scale, main habits
appear clearly; At the individual level, peaks and discrepancies are
different: more precision is required.

(STIF). Each log corresponds to an entry in the transport
network: it is made of a user id, a time stamp and a
location information1.

Smart card data have been widely used to characterize
mobility according to temporal and spatial axes of analy-
sis [6]. However, most of scientific literature is dedicated
to a global and aggregated level (e.g. inference of origin-
destination matrices [7], prediction of congestion [8]).
Fewer studies focus on the user level given that smart
card data is very noisy (due to the variability of human
habits), incomplete (entrance only, data missing due to
sensor failures) and lacks of semantics: labels like going
to work, family outing, seeing friends are not available.
On top of that, data generally concern a short period
of time for privacy reasons (3 months in the presented
use-case): only few samples are available for each user
which penalizes statistical methods. Thus, most user
level models tackle simple prediction tasks (for instance,
next stop or next validation problem [9]).

The section II presents the formalization of the task
and 4 usual models for the temporal profiling of users
based on their smart card logs in the French Parisian
public transportation network. The probability density
functions of the entries of each user are considered and es-
timated using clustering or Gaussian mixture models. In

1Exit information is not available, as in many smart card sys-
tems.



section III, a novel approach is proposed which consists
in combining a pattern extraction approach at the group
level and a personalized time shifted reconstruction to fit
accurately habits of a given user. In section IV, the pro-
posed approach is compared with the usual approaches
and qualitative and quantitative analysis are proposed
to assess its relevance. Finally, section V presents related
works.

II. Baselines & formalism for user profiling
This section describes first the considered assumptions

and the proposed formalism for the profiling task, then
the investigated modelings and their specificities.

A. Data representation
The raw dataset of logs is made of triplets containing

an anonymous user id, a time stamp and a location of
an entry in the network : (id, t, `). In this paper, only
the temporal information is considered for the profiling,
all spatial variables are aggregated as in [10]. In order
to produce a first representation of the user temporal
activity, the logs of each user are aggregated in a daily
base of 24 hours; this time window is next discretized
in 480 regular intervals of 3 minutes. Thus, each user u
is represented by a vector x(u) ∈ RT , where T = 480
and x(u)

t corresponds to the percentage of his validations
occurring in the time interval t. As a consequence, x(u)

sums to one and can be seen as discrete probabilistic
density function (pdf) of the user’s check-ins: Fig 1
illustrates the pdf of two users and the global activity
of the network. Concatenating all user vectors leads to
the matrix X ∈ RU×T , where U denotes the number of
users.

Figure 1 shows that an user pdf is very noisy and
hardly exploitable at the user level. Dictionary learning
algorithms are the most common approaches to tackle
the decomposition of a collection of signals according to
shared robust patterns under the constraint of a minimal
reconstruction error. We propose in the following to
compare different dictionary learning algorithms, where
patterns are learned at different human scales (popula-
tion, groups, individual person) in order to measure their
ability to rebuild accurately individual users.

B. Evaluation
The experimental section IV will provide both qual-

itative and quantitative analysis. An important point
concerns the evaluation of the considered approaches.
The provided dataset includes 13 weeks of logs: 9 weeks
will be used to train the various models and 4 weeks of
virgin data will be used to evaluate the reconstruction
ability for each user. Two quantitative indicators will
be investigated: the mean squared error (MSE) and
the mean likelihood (ML). The reconstruction ability of
the studied models will be evaluated according to the
MSE for each user, then according to the averaged MSE
over the whole dataset. As explained previously we will

distinguish a training error on the data used to learn the
model and a test error, on the remaining 4 weeks.

The MSE based metrics are robust but hardly un-
derstandable. That is why a probabilistic measure will
be also considered. In order to deal with outliers and
unpredictable logs that hinder even robust likelihood
measures2, an unusual metric will be used: the mean
likelihood (ML), by computing the average likelihood of
the test set logs. This indicates how the modelings are
able to predict future logs. As all outputs are normalized
pdf, all measures can be compared.

C. Models & human scales
The first proposed baseline is the overall pdf estimated

using all the users (Fig 1). In such naive approach,
no particular pattern is extracted and the modeling is
obviously too rough to capture different kinds of users.

A second widely used approach is the k-means clus-
tering algorithm [11]. Given k -the number of clusters-
and X as inputs, k profiles are extracted corresponding
to homogeneous user groups. Each profile can be seen
as a 24h-pattern, but users are represented by only one
of them: the representation is not able to mix different
habits during the day, it will poorly represent for instance
users with same habits in the morning and different ones
in the evening.

Non-negative Matrix Factorization techniques (NMF)
received a lot of attention as a source decomposition al-
gorithm [12]. A dedicated version has been implemented
within the context of smart card analysis to extract
localized pattern and to map population dataset on new
axes [13]. Similarly to k-means, patterns are extracted
at the user group level. The details are discussed in
section III.

In order to focus on the individual user scale, a
Gaussian Mixture Model is finally considered. First, a
very large Gaussian dictionary combining 4 standard
deviations (2, 12, 22 and 32 minutes) and 480 means (one
per discreet interval) is built. Every user is decomposed
in this base in a sparse manner using the L1 regularized
LASSO algorithm [14]. In order to tackle efficiently the
mapping step in a very noisy context, the Least Angle
Regression solver is used and the number of Gaussian
atom is limited to 5 per user. This approach performs
actually no dictionary learning and extract predefined
Gaussian behaviors: robustness is improved but no anal-
ysis is possible on the shape of the atoms. The next
section presents a novel strategy able to perform relevant
dictionary learning at the individual user scale.

III. Time Shift-NMF
First, this section presents matrix factorization ap-

proaches dedicated to the user profiling task; then it
describes the proposed novel Time-Shift NMF algorithm.

2For a given user, when one check-in in the test dataset occurs
during a time period with no training check-ins, the likelihood
measure will be null.



A. Non negative matrix factorization
Matrix factorization approaches are widely used in

unsupervised learning contexts when the objective is to
decompose objects of interest into small atoms with the
constraint that each atom is used for the reconstruction
of the largest amount of objects [12]. This constraint
guarantees a regularization of the retrieved atoms and
ensures the generalization capability of the model. More
specifically, non negative matrix factorization (NMF)
introduces an additional constraint: objects are recon-
structed as an additive composition of (positive) atoms,
each atom describing a part of the object.

Formally, given a non negative representation matrix
X ∈ RU×T

+ of U objects along T dimensions (each value
in matrix being positive), the goal of NMF is to find two
non negative matrix W and D such that X ≈ X̂ = WD
with W ∈ RU×R

+ and D ∈ RR×T
+ . Each row Dj,. of D

corresponds to an atom and the value wi,j of the matrix
W denotes the weight of the atom j for the object i.
The i-th object, represented by the row Xi,., is thus
approximated by : X̂i,. = Wi,.D =

∑
j wi,jDj,.. The

number of atoms R allows to control the compactness
and the expressiveness of the representation: fewer atoms
leads to kind of k-means algorithm while a larger number
of atoms creates a potential risk of over-fitting, atoms be-
coming too specific and explaining few situations. Adding
sparsity constraints to control over-fitting is classically
done by penalizing ‖W‖. Finally, additional constraints
can be easily considered during the learning step, for
instances to insure the normalization of the reconstructed
profiles.

B. Time Shift Nonnegative Matrix Factorization (TS-
NMF)

The main idea of the algorithm is to consider that the
patterns in check-in distributions are shared among a
category of users for a given activity, regardless of its
precise time location : an user can go to work at 7:00
and an other at 7:30 depending on the trips duration,
but the two pdf of their check-ins for this activity will
have the same shape and variability if both users have the
same kind of work. Thus, atoms definition becomes time
independent: relevant shapes are learned without the
noise associated to the slight time-shift between users.

The dictionary matrix D ∈ RR×S
+ , with S << T

corresponds to the time range encoded by atoms: S is
assumed to be the maximal time interval where all the
check-ins linked to the same activity can occur for a
particular user. Let denote Φ ∈ RU×R

+ the phase matrix
corresponding to the time position of each atom for
each person and f : RR×S

+ × RU×R
+ → RU×R×T

+ the
operator such that f(D,Φ) is a 3D-tensor containing
each R shifted atoms in the original T time space for U
users. To ensure that each atom represents a probabilistic
distribution, each row of D is constrained to have unit
norm. As in the usual NMF, the reconstruction of each
user is done by weighting and summing up the atoms

Algorithm 1: TS NMF learning algorithm
Data: X ∈ RU×T

+ , R, maxiter, αΦ

1

maxiter: to reach convergence
αΦ: window of search in the
atom shift procedure

Result: Optimized matrix Φ, D and W
2 D,W,Φ = init(X,R)

D and W randomly initialized,
Φ regularly scattered along time
band

3 for it ∈ 0...maxiter do
4 for u ∈ range(0, U) do
5 xu = X[u, .]
6 atoms = descendingEntropy(D)

return atoms indexes sort in
descending order

7 for a ∈ atoms do
8 Φu,a = minimizeLocalCostt(xu, Da)

finding optimal time-shift t in
a window of size αΦ

9 Wu,a = update W (xu,Wu,., D,Φu,a)
Simple gradient descent

10 xu = xu − f(Da,Φu,a)Wu,a

Matching pursuit like update

11 D = update D(W,D,Φ)
12 D = centerAtoms(D)

Centering procedure to make
atoms comparable

according to the weight matrix W . The new regularized
loss is given by : L(D,W,Φ) = ||X −Wf(D,Φ)||F || so
that ∀i,

∑
j wij = 1

Algorithm 1 describes the learning algorithm used
to infer W , Φ and D: it is directly inspired from the
matching pursuit algorithm [15]. A gradient descent
algorithm is used to learn W and D matrices with
respect to the loss function3. As the operator f is highly
non-linear, a greedy optimization procedure is used to
update the Φ matrix: for each user and each atom (in
a descending entropy order to place meaningful atoms
first), the algorithm looks at the best position close to the
actual one which minimizes the local cost. Once an atom
is placed, user data explained by this atom are removed
from the user representation in order to focus on other
parts of the signal.

IV. Experiments
A. Data description and experimental setup

The dataset used in this section is provided by the
”Syndicat des Transports d’̂Ile-de-France” (STIF). It

3Parameters like the number of iterations maxiter are chosen to
achieve convergence



represents over 1 million logs of 10,000 randomly chosen
users having a smart card (Navigo Card) over the 308
metro stations in Paris, France. Users have between 1 and
500 logs over 13 weeks. Data are processed according to
section II-A leading to a matrix X ∈ RU×T of user check-
in pdf estimates with U = 10, 000 rows and T = 480
columns (time intervals of 3 minutes). Only the first 9
weeks of the data are considered in order to construct
the training matrix X, the 4 remaining weeks are used
for testing purpose.

In order to assess the performances of our approaches,
we evaluate the results of the TS-NMF algorithm and the
4 baselines according to Mean Squared Error (MSE) and
Mean Likelihood (ML) metrics presented in section II-
B. Good performances correspond to a minimal MSE
and a maximal ML. The k-means algorithm and the
NMF model are set to use 16 clusters; the Gaussian
Mixture Model (GMM) is detailed in section II-C. For
the TS-NMF algorithm, 16 atoms are used, each of them
describing a time interval of 3 hours (S = 60)4.

B. Experimental Results
Table I presents the results in terms of MSE and

ML measures for the training and the test sets. As
expected, the general model is the worst : the mean
likelihood is slightly better than 0.002, the ML score
of a uniform random model5. The k-means results are
better in terms of MSE but especially in terms of ML.
More surprisingly, the NMF results are very close to
those of k-means showing the incapacity of this model
to fit the data accurately at the user level despite the
high number of involved parameters. Table I shows that
the two best models for our task are the GMM and
the TS-NMF: ML scores of both models are very close;
in terms of MSE, TS-NMF shows a better capacity to
represent the training dataset with a very low MSE, but
both approaches seem to over-fit reaching a degraded
MSE on the test set. Finally, the low variance of the
results computed in 5 independent runs guarantees for
all models a very high stability.

Looking at the number of parameters of each model
(2nd column of the table I), NMF uses 10 times more
parameters than k-means to achieve same results, which
confirms the inability of NMF to fit the data and the
human scale. TS-NMF uses only around two times more
parameters than usual NMF but 50 times less than GMM
for comparable results. The high number of parameters
for the GMM model is due to the number of Gaussian
functions contained into the dictionary and can be com-
putationally problematic for large datasets. Although it
can explain well observed data, it over-fits and obtains
a highest testing cost. In summary, the proposed TS-
NMF shows a good trade-off between performances and

4running time: Kmeans, NMF: 5 minutes, Gaussian Mixture
Model: 10 minutes, TS-NMF: 4 hours.

5The uniform model has a probability of 1/480 = 0.002 at each
time interval and thus an average likelihood of 0.002.

number of parameters.
Given the user temporal profile extraction task, quali-

tative analysis is an important part of the models’ eval-
uations. Indeed, our main goal is to extract meaningful
atoms in order to exploit them. Figure 2 presents the
atoms extracted by classical NMF: atoms are highly
correlated as most of them explain the same period of the
day (morning and evening). The failure of the model to fit
data is thus explained by the large human variability; the
algorithm tends to focus on the few most energetic time
intervals of the day and describes large groups of users at
once, overestimating the individual variance of persons.
Figure 3 presents the top 10 used atoms for the GMM
models: they are all quite similar, with the same (low)
variance and a slight time shift. It illustrates the difficulty
of any semantic labeling based on this representation:
similar behaviors are scattered among multiple atoms,
hindering clustering and interpretability. The good news
resides in the quantitative results: we verify that working
at the individual scale leads to sharper pdf modeling.
Figure 4 shows atoms obtained with TS-NMF6. The
flexibility of our approach is fully exploited : each atom
presents a different check-in distribution, from very punc-
tual distribution (1st atom) to distribution with a high
late variance like the last one. Some TS-NMF atoms uses
the entire 3 hours while other uses only a smaller part.
Various atoms entropies discriminate diffuse activities
from punctual ones.

Finally, to illustrate the interest of the phase matrix
Φ in TS-NMF, figure 5 shows the histogram of the use
of each atom with respect to the time in the day. Some
atoms are localized in the morning (first ones), other in
the afternoon (last ones), while last ones are used during
a large time window. This fact confirms the capacity
of our model to extract features characterizing latent
activities. We are also able to describe a user according
to the timing of his activities. For instance, it is possible
to group users according to both mean and variance in
work departure time.

Figure 6 shows for a random user the raw check-in
density estimation (top) and the reconstruction inferred
by the TS-NMF model, each atom being represented by
a different color.

V. Related Work
Various approaches have been proposed for the extrac-

tion of mobility patterns. Clustering techniques similar
to k-means have been used to characterize trips pattern
[16] or temporality of the trips [17] but as shown in
section IV these clustering approaches are not well suited
for the reconstruction of each individual user profile.
Probabilistic models have been used to capture habits
of networks users [3], [10] but they focus essentially on
the characterization at the system level. [13] proposes

6The time scale is noted same in this figure, as these atoms are
defined for an interval of 3 hours.



Model # param. MSE -train- (mean (std)) MSE -test- (mean (std))
General model 0 0.033 (0) 0.040 (0)

KMeans (16 clusters) 15 339 0.027 (6.3e-6) 0.038 (1.5e-5)
GMM 14 628 690 0.023 (0) 0.050 (0)
NMF 130 224 0.024 (7.7e-5) 0.036 (6.7e-5)

TS-NMF 252 768 0.016 (5.8e-4) 0.042 (8.9e-4)
Model # param. ML -train- (mean (std)) ML -test- (mean (std))
General 0 0.0038 (0) 0.0036(0)

KMeans (16 clusters) 15 339 0.010 (6.3e-6) 0.008 (5.7e-6)
GMM 14 628 690 0.027 (0) 0.018 (0)
NMF 130 224 0.013 (8.3e-5) 0.009 (3.8e-5)

TS-NMF 252 768 0.026 (9.3e-4) 0.016 (4.8e-4)

TABLE I
Models optimized parameter number, reconstruction cost and test cost (MSE (less is better) and Likelihood (high is

better)) mean and variance over 5 runs on the learn/test dataset
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Fig. 2. NMF extracted atoms.
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Fig. 3. Gaussian Mixture Model top 10 atoms.

a probabilistic NMF to mine transportation network
logs but the modeling of check-in events with fixed
distributions leads to a less flexible representation and
prevents to discover unexpected behaviors. Other NMF
approaches have been used in mobility studies for traffic
modeling [18] and urban transportation network [19] but
once more at the network level. Other latent models focus
on the semantic extraction task - labeling trips, urban

space, user activity or latent models [20], [21] - but they
generally lack of reconstruction ability which hinders the
analysis at an aggregated level or at the network level.

VI. Conclusion

In this paper, we proposed a dictionary learning
algorithm based on matrix factorization for temporal
profiling of transportation network users. The proposed
approach has better modeling properties than state-of-
the-art algorithms. The extracted atoms can be used for
a wide range of applications : usual statistical analysis
of the system, of the users habits, but also for latent
semantic labeling of the trips or meaningful clustering
based on the shape of the atoms.

Moreover, considering the compactness of the pro-
posed user representation with respect to the whole
user log (with marginal loss of information) leads to
a powerful compression tool. Incorporating in a same
manner spatial information - which are not taken into
account in this paper - can lead to an efficient compact
and complete representation of users network activity,
helpful for compression purposes but also for semantic
indexing of the users and the network.
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