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General schedule

1 Signal specificities

2 Very different applications

3 Different points of view

4 Benefits/pitfalls
of ML approaches

5 Benefits of deep learning

Which architecture for which application ?
... And which benefits ?
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Time series = specific object

Variable length

An issue... Or not

Noise & de-noising

Specific de-noising strategy based on temporal dependency

Stationarity / Periodicity

Constant statistical properties over time (mean, std. dev.)

Variable mean Variable std. dev. Variable covariance

Number of instances

May be one !
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of next values
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Forecasting task

1 Modeling prediction from history only

2 Adding context = exogenous factors

Prediction is very difficult, especially about
the future

Niels Bohr

Forecasting
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History of data

Exogeneous factors:
- location of the station
- day of the week
- weather conditions

Can be applied on single/multiple instance problem.
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Auto-Regressive approaches

AR/ARMA

The historical answer to time-series forecasting (from statiticians)

AR : Auto-Regressive modeling :

Yt = α+α1Yt−1+α2Yt−2+ . . .+αpYt−p+ε1 (1)

Complete Guide to Time Series Forecasting in Python,
https://www.machinelearningplus.com/time-series/

arima-model-time-series-forecasting-python/ 3620 3625 3630 3635 3640 3645 3650
8

10

12

14

16

18

20

Original signal
AR Forecasting

AR (order 4) : 4 last measures are weighted
by α to predict T
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Auto-Regressive approaches

AR/ARMA

The historical answer to time-series forecasting (from statiticians)

AR : Auto-Regressive modeling :

Yt = α+α1Yt−1+α2Yt−2+ . . .+αpYt−p+ε1 (1)

ARMA : Auto-Regressive Moving Average
modeling :

Yt = α+ α1Yt−1 + α2Yt−2 + . . .+ αpYt−p

+β1εt−1 + β2εt−2 + . . .+ βqεt−q
(2)

Complete Guide to Time Series Forecasting in Python,
https://www.machinelearningplus.com/time-series/

arima-model-time-series-forecasting-python/
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ARMA Forecasting

ARMA (order 4,4) : 4 last measures are
weighted by α & 4 errors ε are weighted by
β to predict T
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AR basic exemples & Periodicity discussion

AR (order = 1) : a very intuitive model : AR on periodic time series (order = 10) :
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Order 1 = delayed version of the
original signal

Periodic signals : high coefficients on
the period
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AR inference

AR :

Prediction at t :

ŷt = α+ α1yt−1 + α2yt−2 + . . .+ αpyt−p

Dynamic Prediction at t (from t − 2) :

ŷt = α+ α1ŷt−1 + α2yt−2 + . . .+ αpyt−p

ARMA :

Prediction at t :

yt = α+ α1yt−1 + α2yt−2 + . . .+ αpyt−p

+β1εt−1 + β2εt−2 + . . .+ βqεt−q

Dynamic Prediction at t (from t − 2) : εt−1

can no longer be computed

3620 3625 3630 3635 3640 3645 3650 3655 3660
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20
Original signal
AR Forecasting
AR Dynamic forcasting

εt that we can’t compute are set to 0
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Parameter optimization

Problem formulation (MSE) :

L =
∑

t

(yt − ŷt)
2, argmin

α,(β)
L

AR problem admits a closed form solution (Yule Walker)

ARMA is a convex problem that is solved by gradient descent

During training, ŷt is estimated from real yt−p values...
Our model is not dedicated to long term prediction.

Wikipedia,
https://en.wikipedia.org/wiki/Autoregressive_model
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Finding AR optimal hyper-parameters

Model selection : AR, ARMA, ARIMA

Temporal window

Statistician Computer scientist

Information Criterion : AIC (/ BIC)

Akaike information criterion :

AIC = 2k − 2 ln(L)

k = nb estimated parameters

Maximizing likelyhood
while penalizing model complexity

Cross validation (always)

Reconstruction criterion : MSE

Estimating the generalization error on
unseen data

In practice : always very low orders
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ARIMA

AR / ARMA approaches are dedicated to stationary signals

Issue 1 : measuring stationarity

Issue 2 : improving stationarity

1949 1951 1953 1955 1957 1959
Month

100

200

300

400

500

600

Hypothesis testing
(e.g. Dicky Fuller Test) :

Results of Dickey-Fuller Test:

Test Statistic 0.815369

p-value 0.991880

Critical Value (1%) -3.482

Critical Value (5%) -2.884

Critical Value (10%) -2.579

Mind the definition of the null hypothesis
(Dickey-Fuller : null = non-stationary )
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Stationarity & ARIMA model

AR / ARMA approaches are dedicated to stationary signals

Issue 1 : measuring stationarity

Issue 2 : improving stationarity
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Hypothesis testing (e.g. Dicky
Fuller Test) :

Results of Dickey-Fuller Test:

Test Statistic -31.448939

p-value 0.000000

Critical Value (1%) -3.436

Critical Value (5%) -2.864

Critical Value (10%) -2.568

mind the definition of the null hypothesis
(Dickey-Fuller : null = non-stationary )
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Improving stationarity = signal differencing

Differencing the signal :

Order 1 :
δt = yt − yt−1 instead of yt
Order 2 :
δ
(2)
t = δt − δt−1 instead of yt

ARIMA :
Adding a (I)ntegrating parameter
= order of differencing

No autocorrelation =
stationary signal
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What can we expect from AR modeling in practice ?

3620 3625 3630 3635 3640 3645 3650 3655 3660
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Original signal
AR Forecasting
AR Dynamic forcasting

In practice :

ARMA with low order = good local
prediction

Interesting modeling at t + 1

Flat prediction at t + N

Main issue :

no seasonality is taken into account
(≈ a way to model
long term dependency)
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Extracting trends & seasonality

1 Working at different scales : year, month, week, day, ...
depending on the dataset

2 Seasonality extraction is done by convolution
denoting a trend t, a season s and a residue ε

period p must be provided

Additive model
y = t + s + ε

Multiplicative model

y = t × s × ε

3 ARMA is performed on the residue

Time series Basics : Exploring traditional TS , G. Jagan
https://www.kaggle.com/jagangupta/

time-series-basics-exploring-traditional-ts

Additive model :

Multiplicative model :
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SARIMA

Extension : Seasonality ARIMA

Add a season length parameter

Order(s) + Integration inside season

+ at the season level : st = αst−1 + . . .

2017-09-13 2017-09-15 2017-09-17 2017-09-19 2017-09-21 2017-09-23

80000

100000

120000

140000

160000

180000
Mean Absolute Percentage Error: 3.94%

model
actual

Adding seasonality
enables long term
better predictions.

ARMA tends to 0.
Seasonality & trend
remain reasonable.
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AR/ARMA/SARIMA & exogenous factors

Give side informations about :

the day, the hour,

the weather condition...

AR :
ŷt = α+ α1yt−1 + α2yt−2 + . . .+ αpyt−p

AR + exogenous factors e1, e2, . . . :

ŷt = α+ α1yt−1 + α2yt−2 + . . .+ αpyt−p + β1et,1 + β2et,2 + . . .

⇒ you must provide exogenous factor for the inference on the test set
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Exponential Filtering (Holt-Winters predictor)

A well known alternative to SARIMA :

Order 1 :
ŷt = α · yt + (1− α) · ŷt−1

Seasonality triple exponential filtering (=Holt-Winters)
Prediction at horizon m, season = s, season length=L

1st order recursive model : ℓt = α (yt − st−L) + (1− α) (ℓt−1 + bt−1)

Differencing : bt = β (ℓt − ℓt−1) + (1− β)bt−1

Seasonality : st = γ (yt − ℓt) + (1− γ)st−L

Combination : ŷt+m = ℓt +mbt + st−L+1+(m−1)%L

NB : the way to build this estimator is close to the gradient computation in ADAM
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Exponential Filtering : results are close to SARIMA

Seasonality becomes more important than local modeling. . .

0 50 100 150 200 250

40000

60000

80000

100000

120000

140000

160000

180000

Mean Absolute Percentage Error: 4.84%

Model
Actual

Greater horizon, simpler model

To look away an averaged season + trend is enough
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Facebook Prophet model

General formulation (Additive model) :

y(t) = g(t) + s(t) + h(t) + e(t)

g(t) : trends (for non periodic changes)

s(t) : seasonality. In fact seasonality is multi-scale :

sh(t) hour, sd(t) day, sw (t) week, sm(t) month

h(t) : holidays = prophet denomination for exogenous factors

e(t) : residue

⇒ from statistics... Prophet ≈ SARIMA
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Prophet output
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Prophet exogenous factor encoding
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Simply define a DataFrame for your event & add it...

1 mod = Prophet ( h o l i d a y s=s p e c i a l e v e n t s )
2 #mod = Prophet ( )

Additional refinement :

definition of overlapping special events

possibilities to define additive or subtractive
behaviour.
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Prophet vs SARIMA

Prophet = a statistician tool in a computer science package

more efficient (faster)

more convenient ((almost) no parameter to set)

great integration with pandas

auto seasonality determination (relying on the calendar)
obvious counterpart : pandas is required

better ML integration (scikit-learn / cross validation)

⇒ The statistical baseline to challenge ML approaches

22/56



Machine Learning
Forecasting



Introduction Stat. Forecasting ML forcasting Metrics & Anomalies Pitfalls Concl.

From AR to standard ML chains

Linear (& non linear) regression : not only an interpolator but also a predictor

feature engineering

Statistical features (tsfresh) + time freq
Sales prediction case
example of features

SVM, XGboost, ... Or neural networks

Easy & cheap

some models will never be production ready as they demand too much time for the data
preparation (for example, SARIMA),
or require frequent re-training on new data (again, SARIMA),
or are difficult to tune (good example - SARIMA),
so it’s very often much easier to select a couple of features from the existing time series and
build a simple linear regression or, say, a random forest. Good and cheap.

Dmitry Sergeyev
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Rolling approaches

Introducing AR features in an ML environment :

𝑥𝑡

𝑦𝑡

𝑥𝑡+1

𝑦𝑡+1

𝑥𝑡 𝑦𝑡

𝑦𝑡−1

𝑦𝑡−2

𝑦𝑡−3

𝑦𝑡−4

lag variables
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Predict further in time

how to do it with ARMA?

Train your model at t + 1
(always)
Apply learnt coefficient α
on prediction ŷ
Expect poor results
(without seasonality)

how to do it with ML chain

Learning to predict further
directly
Intrinsically compatible
with exogenous variables

𝑥𝑡

𝑦𝑡
𝑦𝑡+1

𝑥𝑡 𝑦𝑡

(𝑥)𝑓𝑡 (𝑥)𝑓𝑡+1

Training  (𝑥)𝑓𝑡

𝑥𝑡

Training 

𝑦𝑡+1

𝑦𝑡

(𝑥)𝑓𝑡+1
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Predict further in time

how to do it with ARMA?

Train your model at t + 1
(always)
Apply learnt coefficient α
on prediction ŷ
Expect poor results
(without seasonality)

how to do it with ML chain

Learning to predict further
directly
Intrinsically compatible
with exogenous variables

Training 
Exogeneous factors: 
- location of the station 
- day of the week 
- weather conditions
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Exogenous factors / Feature engineering

Exogenous factors is straightforward in ML : just add features in the dataset

Another way to encode seasonality
Using pandas to catch up prophet functions

Types of days
Hours...

Example of time encoding : hour, day, week-end :
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Feature engineering

Depending on the application ⇒ discussions with experts
[Often] more expert features ⇒ more performance

Local statistics computations

Statistic moment

Frequency / power spectral density...

tsfresh

Hundreds of features...
... & test of relevant ones

𝑥𝑡

𝑦𝑡

𝑥𝑡+1

𝑦𝑡+1

𝑥𝑡 𝑦𝑡

𝑦𝑡−1

𝑦𝑡−2

𝑦𝑡−3

𝑦𝑡−4

Classical feature engineering

Feature clustering, ...

Target encoding

e.g. Average value on Monday / weekday / ...

⇒ pandas is required for rolling, date reading & target encoding...
pandas is essential for timeseries !
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Sales prediction use case

Nature of the data

Shops
Items

Target :

Fine grain : predicting the amount of each items in each Shops
General : sales revenue

Idea : extracting features for all objects

⇒ Exploit ML plasticity ⇔ hard to model with AR

K. Yacovlev , Kaggle notebook, 2019
https://www.kaggle.com/kyakovlev/1st-place-solution-part-1-hands-on-data
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Sales prediction use case : classical features

Items (aggregated over all shops)

Item category (from expert, from
name, ...)
Item general trends
Binary : Is deprecated / Is new
Price/volume categorization :

removing (or separating outliers)
linspace separation
histogram
clustering

Shops

Same features + co-clustering with
items

Time

Black Friday, holidays, ...

Items prices & volumes

0 50000 100000 150000 200000 250000 300000
price 

0

25000

50000

75000

100000

125000

150000

175000

vo
lu

m
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Sales prediction use case : classical features

Items (aggregated over all shops)

Item category (from expert, from
name, ...)
Item general trends
Binary : Is deprecated / Is new
Price/volume categorization :

removing (or separating outliers)
linspace separation
histogram
clustering

Shops

Same features + co-clustering with
items

Time

Black Friday, holidays, ...

Items log prices & volumes
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Sales prediction use case : mono/multivariate approach

Single shop prediction

with some features computed on multiple shops

Multiple shop prediction

Predicting all item per shop sales

Feature engineering makes monovariate prediction very strong

Deep learning (try to) tackles multivariate prediction

To extract relevant feature automatically
To find fine correlation between shop/item dynamics
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Variable weights normalization & interpretations

Do not forget to normalize your data

Always in ML... But really mandatory when dealing with heterogenous variables

Model introspection is always a good Idea

0 10 20 30 40 50

80000

100000

120000

140000

160000

Mean absolute percentage error 5.45%

prediction
actual
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Variable weights normalization & interpretations

Do not forget to normalize your data
Always in ML... But really mandatory when dealing with heterogenous variables

Model introspection is always a good Idea
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Regularization & variable selection

Extracting many features (or even several) lead to this kind of data shape :
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Ridge/regularized logistic regression

at least, to reduce the bad impact of
correlated variables

LASSO/Variable selection procedure

Reducing the number of features
scikit-learn...
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XGBoost (everything ?)

A nice algorithm...
And a wonderful implementation !

like libSVM, word2vec, ...

Unsurprisingly ⇒ Yes, it is a good idea

Unmatched
performance/development-time ratio

Surprising resistance to overfitting
Efficiency of the default setting

Model introspection :
let’s exploit all available functions

Amjad Abu-Rmileh, The Multiple faces of Feature
importance in XGBoost
https://towardsdatascience.com/

be-careful-when-interpreting-your-features-importance-in-xgboost-6e16132588e7
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Metrics – How to evaluate if our predictions are relevant ?

R squared

s2y = Empirical variance of Y :

s2y =
1

n

n∑

i=1

(ŷi − y)2 +
1

n

n∑

i=1

(yi − ŷi )
2

s2y = explained variance + residual variance

R2 =

∑
i (ŷi − y)2∑
i (yi − ŷi )2

=
explained variance

residual variance
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Metrics – How to evaluate if our predictions are relevant ?

R squared

coefficient of determination (in econometrics it can be interpreted as a percentage of
variance explained by the model)

R2 = 1− SSresidue
SStotal

1 : all variance of the data explained ⇒
best results

0 : worst model
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Classical metrics

Mean Absolute error

MAE =

n∑
i=1

|yi − ŷi |

n

Median Absolute Error (robust to outliers)

MedAE = median(|y1 − ŷ1|, ..., |yn − ŷn|)

Mean Absolute Percentage Error

MAPE =
100

n

n∑

i=1

|yi − ŷi |
yi

Choose the metric adapted to your data to evaluate...
Even if you (often) use MSE as a learning criterion
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Side effects with MAPE, definition of SMAPE

Working on sparse data (e.g. validations of a single
user in public transportation)
Lots of 0 in the ground truth :

MAPE = 100
n

n∑
i=1

|yi−ŷi |
yi

diverges

week00
week01

week02
week03

week04
week05

week06
week07

week08
week09

week10
week11

week12
week13

Solutions :

Rough aggregation over time to reduce sparseness

Dedicated metrics

... SMAPE :

SMAPE1 =
100%

n

n∑

t=1

|yt − ŷt |
(|ŷt |+ |yt |) /2

or SMAPE2 =

∑n
t=1 |yt − ŷt |∑n
t=1 (ŷt + yt)

Not magic... but sometimes robust enough to build an operational system
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Anomaly definition

Something that is not supposed to append. Different cases :

Outlier / error of measurement

Distance between observations and predictions

Anomaly tag labeled in the dataset

⇒ we focus on distances

Required for in-depth evaluation & for model monitoring in production
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Anomaly detection : proposed implementation

Computing bounds very easily :

1 mae = mean ab s o l u t e e r r o r ( s e r i e s [ window : ] , p r e d i c t i o n [ window : ] )
2 d e v i a t i o n = np . s t d ( s e r i e s [ window : ] − p r e d i c t i o n [ window : ] )
3 l owe r bond = p r e d i c t i o n − (mae + s c a l e ∗ d e v i a t i o n )
4 upper bond = p r e d i c t i o n + (mae + s c a l e ∗ d e v i a t i o n )

scale = 1.96 (often)

A more robust approach (still easy to implements)

1 cv = c r o s s v a l s c o r e (model , s e r i e s [ window : ] , t a r g e t [ window : ] ,
2 s c o r i n g=” n e g mean ab s o l u t e e r r o r ” )
3 mae = cv . mean ( ) ∗ (−1)
4 d e v i a t i o n = cv . s t d ( )
5 l owe r bond = p r e d i c t i o n − (mae + s c a l e ∗ d e v i a t i o n )
6 upper bond = p r e d i c t i o n + (mae + s c a l e ∗ d e v i a t i o n )

scale = 1.96 (often)
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Expected results

0 10 20 30 40 50

60000

80000

100000

120000

140000

160000

Mean absolute percentage error 5.45%

prediction
actual
upper bond / lower bond
Anomalies

Anomalies are prediction outside the confidence bounds
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Case 1 : trend change

Difficult case : what happen when the test distribution diverges from the training one ?

0 20 40 60 80 100 120 140
200

250

300

350

400

450

500

550

600

Quarterly Australian beer production (1956-1994)

Autralian beer production : typical series
with abrupt change

Predicting on long term basis with
SARIMA :
trend + season

Time Series Nested Cross-Validation, Courtney Cochrane
https://towardsdatascience.com/time-series-nested-cross-validation-76adba623eb9
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Autralian beer production : typical series
with abrupt change
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Quarterly Australian beer production (1956-1994)

Beer prod.
Estimation

Predicting on long term basis with
SARIMA :
trend + season

Time Series Nested Cross-Validation, Courtney Cochrane
https://towardsdatascience.com/time-series-nested-cross-validation-76adba623eb9
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Case 1 : Detection & Resolution

+ A good example : trend may change abruptly in many situations

− Who has ever use the same (SARIMA) model 10 years long without :

retraining
feeding the model with real data regularly

A particular instance of iid hypothesis failure : very classical in ML

Detection Resolution

Human monitoring

Anomaly detection

Change detection

Re-train models regularly

Evaluate your model on recent Data
(even in production)

Perform anomaly detection, raise
alarms
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Case 1 : getting closer to real case

Keep the same model on a long term basis...

... But feed it with new data at each time step

0 20 40 60 80 100
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500

550

600

Mean absolute percentage error 4.34%

prediction
actual

Difficult to estimate the quality of the prediction

42/56



Introduction Stat. Forecasting ML forcasting Metrics & Anomalies Pitfalls Concl.

Case 1 : getting closer to real case

Keep the same model on a long term basis...

... But feed it with new data at each time step
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Mean absolute percentage error 4.34%
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upper bond / lower bond
Anomalies

⇒ Adding confidence bounds & alarm detection
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Case 1 : getting closer to real case

Keep the same model on a long term basis...

... But feed it with new data at each time step
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Mean absolute percentage error 4.34%

prediction
actual
upper bond / lower bond
Anomalies

Alterative : Monitoring the results of a strong baseline
⇒ Results will converge between advanced model & baseline
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Case 2 : a pretty good forecast

When you look at it from afar

How (not) to use Machine Learning for time series forecasting : Avoiding the pitfalls, Vegard Flovik
https://towardsdatascience.com/how-not-to-use-machine-learning-for-time-series-forecasting-avoiding-the-pitfalls-19f9d7adf424
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Case 2 : a pretty good forecast

But actually :

Data are generated from a random walk...

⇒ it can’t be predicted !

How (not) to use Machine Learning for time series forecasting : Avoiding the pitfalls, Vegard Flovik
https://towardsdatascience.com/how-not-to-use-machine-learning-for-time-series-forecasting-avoiding-the-pitfalls-19f9d7adf424
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Case 2 : look at the details

A very basic solution : ŷt = yt−1
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Case 2 : what was wrong ? How to detect this case ? [Statistics]

Do not use ARMA on non stationary
signals

Measure cross-correlation
between y and ŷ .
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Case 2 : what was wrong ? How to detect this case ? [Computer science]

Always compare a predictor to a strong baseline

Choose the good baselines

Linear ? ⇒ not sufficient
Time series ⇒ at least

Previous value : ŷt = yt−1

Moving average : ŷt =
1
T

∑
i yt−i

1 Compare the results in CV...

2 And the standard deviation on the
results.
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Baselines : a more comprehensive list

General baseline for time series :

Previous value : ŷt = yt−1

Moving average : ŷt =
1
T

∑
i yt−i

Predict always the most frequent value (rarely efficient on time series)

Seasonal data :

Take one averaged season

e.g. in public transportation :
average weekday or average Monday
= prediction for every Monday
Strong baseline on specific dataset
Very strong baseline beyond T + 1

2.2 Nonnegative Matrix Factorization (NMF)

Our goal is to provide a more robust, e�cient and understandable representation
of the behavior of the network. The main assumption about the generic behavior
of a station is that it can be separated into few weighted standard patterns.
Thus, we explore a state of the art robust source separation algorithm adapted
to our nonnegative dataset: the NMF [7]. With NMF, we work exclusively on
normalized data: we aim at modeling habits, not at detecting days with clear
power drops. The idea consists in learning both a dictionary D 2 RZ⇥T made
of Z atoms az 2 RT and the associated reconstruction code matrix W 2 RN⇥Z

so as to obtain x†
s,i ⇡ P

z ws,i(z)az, where ws,i 2 RZ is the weight vector

associated to x†
s,i. The general formulation of the regularized learning problem

is the following one: argminW,D

��X† � WD
��

F
+ �W kWkF .

In order to enforce e�ciency, robustness and make atoms more understand-
able, we introduce slight modifications in the original NMF. First, we divide the
learning process into two steps: 1) W̄ and D are learned on the reference matrix
X̄† so as to obtain robust atoms quickly. 2) Once the dictionary D fixed, W
is learned by considering N independent reconstruction problems corresponding
to the x†

s,i using the x̄s,di
representation as initialization to enforce the use of

same atoms for same days. Our second proposal consists in a mono-modal con-
straint added on the atoms; doing this, we enforce every atom to have a single
maximum. As a consequence, each atom focuses on a specific compact part of
the day (cf Fig 1). In practice, we introduce a smoothing procedure preserving
only the strongest maximum for each atom in the gradient descent algorithm.

4h 10h40 17h20 0h

200 400 600 800 1000 1200 1400

200 400 600 800 1000 1200 1400

200 400 600 800 1000 1200 1400

200 400 600 800 1000 1200 1400

200 400 600 800 1000 1200 1400

200 400 600 800 1000 1200 1400

200 400 600 800 1000 1200 1400

200 400 600 800 1000 1200 1400

200 400 600 800 1000 1200 1400

200 400 600 800 1000 1200 1400

200 400 600 800 1000 1200 1400

4h 10h40 17h20 0h

Fig. 1: [left] (a) 09/10/2015 for station Marcel Sembat, (b) Averaged Wednesday
model for Marcel Sembat, (c) NMF reconstruction of the first distribution. [right]
Mono-modal atom examples extracted from the dictionary.

The anomaly detection approach is based on the symmetrised KL divergence;
indeed, every w is a distribution (due to the normalization constraint in the NMF

procedure). Thus, the anomaly score becomes: score(s, i) =
P

z ws,i(z) log
ws,i(z)
w̄s,di

(z)+

w̄s,di
(z) log

w̄s,di
(z)

ws,i(z) .

One Wednesday / averaged Wednesday on a
particular subway station

ML classical baseline

Linear model

K-nn : all yt−1 = α lead to yt = β
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Case 3 : In-sample evaluation

Classical block cross-validation = seeing the future

cheating on any unpredictable (/ not
modeled) trends

Difficult prediction problem turns
into to a simpler interpolation
problem

side effect at the beginning/end of
each test split (cf next slide)

Leonard J. Tashman, Int. Jour. of Forecasting, 2000
Out-of-sample tests of forecasting accuracy : an analysis and review
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Case 3 : In-sample evaluation & information leak

Shuffled cross validation : test samples are surrounded by training ones

𝑥𝑡

𝑦𝑡

𝑥𝑡+1

𝑦𝑡+1

𝑥𝑡

𝑦𝑡+1

𝑥𝑡+2

𝑦𝑡+2

𝑥𝑡+2

𝑥𝑡+1

Target xt+1 : find the most correlated points {xc} in the training set

Add criterion to detect the better one regarding temporal evolution

Predict x⋆c [end ]

⇒ it can even work to predict at T + N !
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Case 3 : In-sample evaluation & information leak

Shuffled cross validation : test samples are surrounded by training ones

𝑥𝑡

𝑦𝑡

𝑥𝑡+1

𝑦𝑡+1

𝑥𝑡

𝑦𝑡+1

𝑥𝑡+2

𝑦𝑡+2

𝑥𝑡+2

𝑥𝑡+1

The only thing evaluated in this procedure is :
Is yt+1 close to yt most of the time ?

... And it is often the case !
⇒ You may obtain a prediction accuracy better that the intrinsic noise level !
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Case 3 : In-sample / Out-of-sample evaluation [single series]

Switching to out-of-sample evaluation :

Note : to optimize your parameters, you have to use a validation set at the end of the
training set.

Leonard J. Tashman, Int. Jour. of Forecasting, 2000
Out-of-sample tests of forecasting accuracy : an analysis and review
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Case 3 : Complete Nested Cross-Validation procedure [single series]

Good news : it is already implemented in scikit-learn. ⇒ just use it !

from sklearn.model selection import TimeSeriesSplit
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Case 3 : Nested Cross Validation over a population

Interdependent samples

e.g. evolution of the temperature in
multiple cities / sales in different shops

Apply the Nested CV on all samples

Make sure that Train/test frontier
corresponds to an absolute time-stamp

Independent samples
e.g. Patient response to a treatment
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Case 3 : Detect temporal information leak

Nested cross validation is supposed to enable you to detect information leak...
One case remains critical

Creating a leaking feature may be difficult to detect.

e.g.
An aggregation of values overflowing in the future of the sample

Target encoding

Uncontrolled feature (from tsfresh)

       Train Test

Feature
generator

X_train y_train X_test y_test

    Train Test

Feature
generator

X_train y_train

limited acces to the data

For loop through the dataset

⇒ Even if we don’t like for loop, even if it is less convenient...
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Case 4 : Normalization of the lag variables (not the contextual ones)

𝑥𝑡

𝑦𝑡

𝑥𝑡+1

𝑦𝑡+1

𝑥𝑡 𝑦𝑡

𝑦𝑡−1

𝑦𝑡−2

𝑦𝑡−3

𝑦𝑡−4

As in any machine learning use case, dealing with time series requires normalization :

Normalization by columns

⇒ Great impact of future
measurements on the data

⇒ Destruction of the temporal
dependencies

Normalization by line

Impact of the future measurements on the data
... But limited impact

Normalizing by the max
Even better : normalizing by the 99% percentile
Very stable information that could have been
given by an expert

54/56



Conclusion



Introduction Stat. Forecasting ML forcasting Metrics & Anomalies Pitfalls Concl.

Important factors in time series prediction

Analysing local dynamics = Auto Regressive models

⇒ Useful for close prediction
⇒ Not sufficient for mid/long term prediction

Distinguish : past values ; trends & seasonality ; exogenous factors...

⇒ Impact of specific pattern ?
⇒ Bridge between time series prediction ⇔ source separation

Pitfalls are numerous...

⇒ Don’t forget your statistical references
⇒ Always consider a XGBoost/Random Forest option... and compare it to the right

baselines
⇒ Beware of magical features / unrealistic good prediction ( !)
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Global picture

Modèles AR

Modèles ML : SVM, XGB

Modèles DL : CNN, RNN

In
cr

em
en

ta
l

Different approaches, different paradigms/syntaxes
Different costs, different expectations
Different hardware supports
Great tools... But remind the time frame 56/56
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