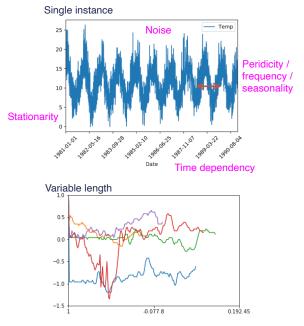


TIME-SERIES ANALYSIS & DEEP-LEARNING

June 17th, 2022

Vincent Guigue

INTRODUCTION



- 1 Signal specificities
- 2 Very different applications
- 3 Different points of view
- 4 Benefits/pitfalls of ML approaches
- 5 Benefits of deep learning



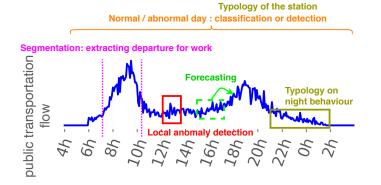
- 2 Very different applications
- 3 Different points of view
- Benefits/pitfalls of ML approaches
- 5 Benefits of deep learning

public transportation flow 4h - 4h - 4h - 6h - -10h - 2h -

Normal / abnormal day : classification or detection

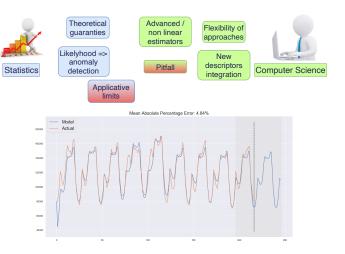
Typology of the station

- 1 Signal specificities
- 2 Very different applications
- 3 Different points of view
- Benefits/pitfalls of ML approaches
- 5 Benefits of deep learning



- 1 Signal specificities
- 2 Very different applications
- 3 Different points of view
- 4 Benefits/pitfalls of ML approaches
- 5 Benefits of deep learning

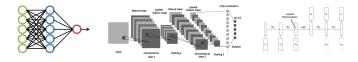
- 1 Signal specificities
- 2 Very different applications
- 3 Different points of view
- Benefits/pitfalls of ML approaches
- 5 Benefits of deep learning

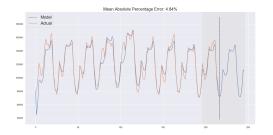


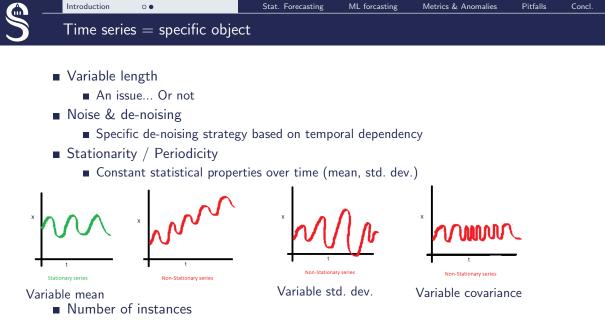
- 1 Signal specificities
- 2 Very different applications
- **3** Different points of view
- 4 Benefits/pitfalls of ML approaches
- 5 Benefits of deep learning

Which architecture for which application ? ... And which benefits ?

- 1 Signal specificities
- 2 Very different applications
- 3 Different points of view
- Benefits/pitfalls of ML approaches
- 5 Benefits of deep learning

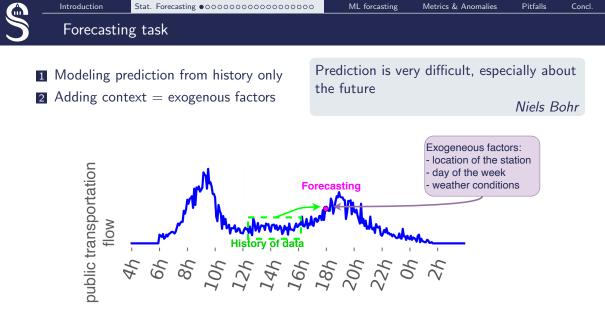






May be one !

STATISTICAL FORECASTING OF NEXT VALUES



Can be applied on single/multiple instance problem.

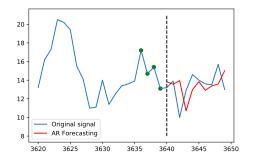
AR/ARMA

The historical answer to time-series forecasting (from statiticians)

AR : Auto-Regressive modeling :

$$Y_t = \alpha + \alpha_1 Y_{t-1} + \alpha_2 Y_{t-2} + \ldots + \alpha_p Y_{t-p} + \varepsilon_1$$
(1)

Complete Guide to Time Series Forecasting in Python, https://www.machinelearningplus.com/time-series/ arima-model-time-series-forecasting-python/



AR (order 4) : 4 last measures are weighted by α to predict T

AR/ARMA

The historical answer to time-series forecasting (from statiticians)

AR : Auto-Regressive modeling :

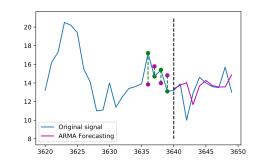
$$Y_t = \alpha + \alpha_1 Y_{t-1} + \alpha_2 Y_{t-2} + \ldots + \alpha_p Y_{t-p} + \varepsilon_1$$
(1)

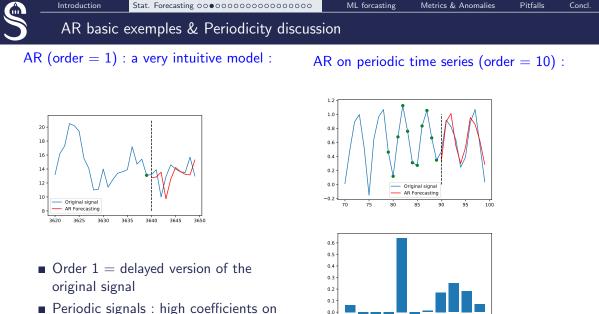
ARMA : Auto-Regressive Moving Average modeling :

$$Y_{t} = \alpha + \alpha_{1} Y_{t-1} + \alpha_{2} Y_{t-2} + \ldots + \alpha_{p} Y_{t-p} + \beta_{1} \varepsilon_{t-1} + \beta_{2} \varepsilon_{t-2} + \ldots + \beta_{q} \varepsilon_{t-q}$$
(2)

Complete Guide to Time Series Forecasting in Python, https://www.machinelearningplus.com/time-series/ arima-model-time-series-forecasting-python/

ARMA (order 4,4) : 4 last measures are weighted by α & 4 errors ε are weighted by β to predict T





-0.1

0

 Periodic signals : high coefficients on the period

10

AR :

Prediction at t :

$$\hat{y}_t = \alpha + \alpha_1 y_{t-1} + \alpha_2 y_{t-2} + \ldots + \alpha_p y_{t-p}$$

Dynamic Prediction at t (from t - 2) :

$$\hat{y}_t = \alpha + \alpha_1 \hat{y}_{t-1} + \alpha_2 y_{t-2} + \ldots + \alpha_p y_{t-p}$$

ARMA :

Prediction at t :

$$y_t = \alpha + \alpha_1 y_{t-1} + \alpha_2 y_{t-2} + \dots + \alpha_p y_{t-p} + \beta_1 \varepsilon_{t-1} + \beta_2 \varepsilon_{t-2} + \dots + \beta_q \varepsilon_{t-q}$$

■ Dynamic Prediction at *t* (from *t* − 2) : *ε*_{*t*−1} can no longer be computed



ε_t that we can't compute are set to 0

Problem formulation (MSE) :

$$\mathcal{L} = \sum_t (y_t - \hat{y}_t)^2, \quad \text{arg min } \mathcal{L} \ _{lpha,(eta)}$$

- AR problem admits a closed form solution (Yule Walker)
- ARMA is a convex problem that is solved by gradient descent

During training, \hat{y}_t is estimated from real y_{t-p} values... Our model is not dedicated to long term prediction.

Wikipedia, https://en.wikipedia.org/wiki/Autoregressive_model

Finding AR optimal hyper-parameters

- Model selection : AR, ARMA, ARIMA
- Temporal window

Statistician

- Information Criterion : AIC (/ BIC)
- Akaike information criterion :

 $\mathsf{AIC} = 2k - 2\ln(\mathcal{L})$

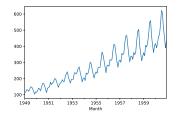
- k = nb estimated parameters
 - Maximizing likelyhood
 - while penalizing model complexity

In practice : always very low orders

Computer scientist

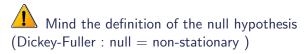
- Cross validation (always)
 - Reconstruction criterion : MSE
- Estimating the generalization error on unseen data

- AR / ARMA approaches are dedicated to stationary signals
- Issue 1 : measuring stationarity
- Issue 2 : improving stationarity



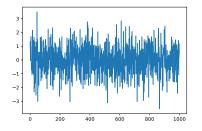
Hypothesis testing (e.g. Dicky Fuller Test) :

Results of Dickey-Fuller	lest:
Test Statistic	0.815369
p-value	0.991880
Critical Value (1%)	-3.482
Critical Value (5%)	-2.884
Critical Value (10%)	-2.579



(m)	Introduction	Stat. Forecasting 000000000000000000000000000000000000	ML forcasting	Metrics & Anomalies	Pitfalls	Concl.	
5	Stationarity & ARIMA model						
	AR / ARMA approaches are dedicated to stationary signals						

- Issue 1 : measuring stationarity
- Issue 2 : improving stationarity



Hypothesis testing (e.g. Dicky Fuller Test) :

Results of Dickey-Fuller Test:	
Test Statistic	-31.448939
p-value	0.000000
Critical Value (1%)	-3.436
Critical Value (5%)	-2.864
Critical Value (10%)	-2.568

mind the definition of the null hypothesis (Dickey-Fuller : null = non-stationary)

Improving stationarity = signal differencing

Differencing the signal :

```
Order 1 :

\delta_t = y_t - y_{t-1} instead of y_t

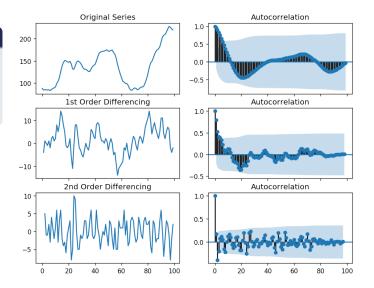
Order 2 :

\delta_t^{(2)} = \delta_t - \delta_{t-1} instead of y_t
```

 $\begin{array}{l} {\sf ARIMA}:\\ {\sf Adding \ a \ (I)} {\sf ntegrating \ parameter} \end{array}$

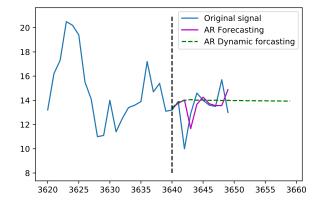
= order of differencing

No autocorrelation = stationary signal



Introduction

What can we expect from AR modeling in practice?



In practice :

 $\label{eq:ARMA} \mbox{ with low order} = \mbox{good local} \mbox{ prediction}$

Interesting modeling at t + 1
Flat prediction at t + N

Main issue :

no **seasonality** is taken into account (\approx a way to model long term dependency)

Extracting trends & seasonality

- Working at different scales : year, month, week, day, ... depending on the dataset
- 2 Seasonality extraction is done by convolution
 - denoting a trend t, a season s and a residue ε
 - period p must be provided
 - Additive model

Introduction

$$y = t + s + \varepsilon$$

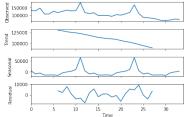
Multiplicative model

$$y = t \times s \times \varepsilon$$

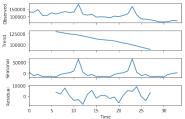
3 ARMA is performed on the residue

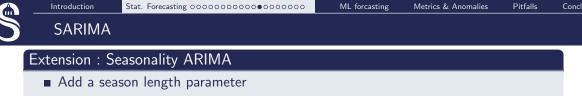
Time series Basics : Exploring traditional TS, G. Jagan https://www.kaggle.com/jagangupta/time-series-basics-exploring-traditional-ts

Additive model :

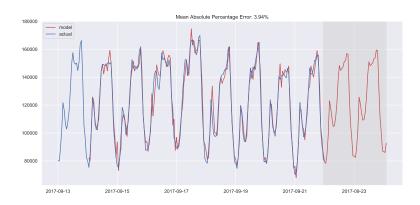


Multiplicative model :





- Order(s) + Integration inside season
- + at the season level : $s_t = \alpha s_{t-1} + \dots$



Adding seasonality enables long term better predictions.

ARMA tends to 0. Seasonality & trend remain reasonable.

Give side informations about :

- the day, the hour,
- the weather condition...

AR :

$$\hat{y}_t = \alpha + \alpha_1 y_{t-1} + \alpha_2 y_{t-2} + \ldots + \alpha_p y_{t-p}$$

AR + exogenous factors e_1, e_2, \ldots :

$$\hat{y}_t = \alpha + \alpha_1 y_{t-1} + \alpha_2 y_{t-2} + \ldots + \alpha_p y_{t-p} + \beta_1 e_{t,1} + \beta_2 e_{t,2} + \ldots$$

 \Rightarrow you must provide exogenous factor for the inference on the test set



A well known alternative to SARIMA :

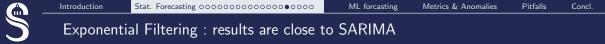
Order 1 :

$$\hat{y}_t = \alpha \cdot y_t + (1 - \alpha) \cdot \hat{y}_{t-1}$$

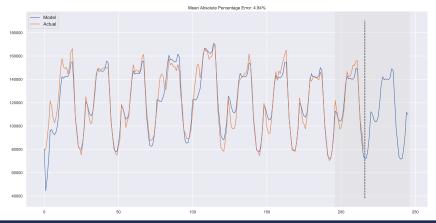
Seasonality triple exponential filtering (=Holt-Winters)
 Prediction at horizon *m*, season = *s*, season length=*L*

1st order recursive model : $\ell_t = \alpha (y_t - s_{t-L}) + (1 - \alpha) (\ell_{t-1} + b_{t-1})$ Differencing : $b_t = \beta (\ell_t - \ell_{t-1}) + (1 - \beta)b_{t-1}$ Seasonality : $s_t = \gamma (y_t - \ell_t) + (1 - \gamma)s_{t-L}$ Combination : $\hat{y}_{t+m} = \ell_t + mb_t + s_{t-L+1+(m-1)\%L}$

NB : the way to build this estimator is close to the gradient computation in ADAM



Seasonality becomes more important than local modeling...



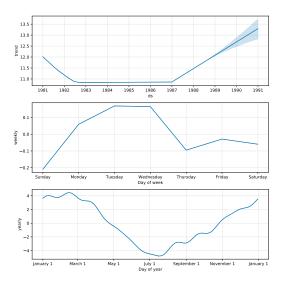
Greater horizon, simpler model

To look away an averaged season + trend is enough

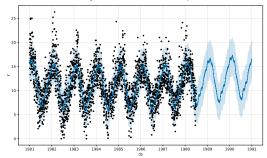
General formulation (Additive model) :

$$y(t) = g(t) + s(t) + h(t) + e(t)$$

- g(t) : trends (for non periodic changes)
- s(t) : seasonality. In fact seasonality is multi-scale :
 - $s_h(t)$ hour, $s_d(t)$ day, $s_w(t)$ week, $s_m(t)$ month
- h(t): holidays = prophet denomination for exogenous factors
- e(t) : residue
- \Rightarrow from statistics... Prophet \approx SARIMA



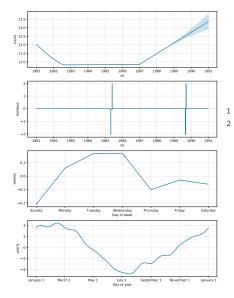
Australian daily minimum temperature



Introduction

Concl

Prophet exogenous factor encoding



Simply define a DataFrame for your event & add it...

```
1 mod = Prophet(holidays=special_events)
2 #mod = Prophet()
```

Additional refinement :

- definition of overlapping special events
- possibilities to define additive or subtractive behaviour.

Prophet = a statistician tool in a computer science package

- more efficient (faster)
- more convenient ((almost) no parameter to set)
 - great integration with pandas
 - auto seasonality determination (relying on the calendar)
 - obvious counterpart : pandas is required
- better ML integration (scikit-learn / cross validation)
- \Rightarrow The statistical baseline to challenge ML approaches

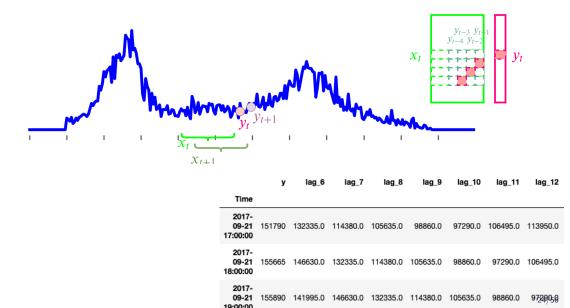
MACHINE LEARNING FORECASTING

- Linear (& non linear) regression : not only an interpolator but also a predictor
- feature engineering
 - Statistical features (tsfresh) + time freq
 - Sales prediction case
 - example of features
- SVM, XGboost, ... Or neural networks
- Easy & cheap

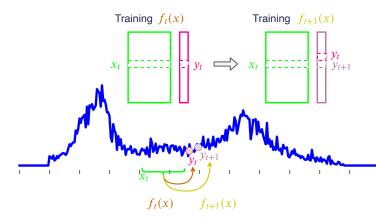
some models will never be *production ready* as they demand too much time for the data preparation (for example, SARIMA), or require frequent re-training on new data (again, SARIMA), or are difficult to tune (good example - SARIMA), so it's very often much easier to select a couple of features from the existing time series and build a simple linear regression or, say, a random forest. Good and cheap.

Dmitry Sergeyev

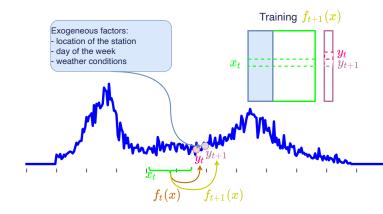
Introducing AR features in an ML environment :



- how to do it with ARMA?
 - Train your model at t + 1 (always)
 - Apply learnt coefficient α on prediction ŷ
 - Expect poor results (without seasonality)
- how to do it with ML chain
 - Learning to predict further directly
 - Intrinsically compatible with exogenous variables



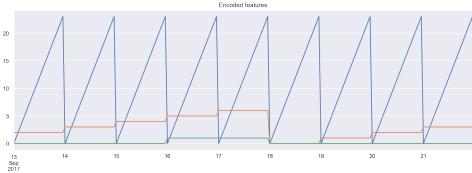
- how to do it with ARMA?
 - Train your model at t + 1 (always)
 - Apply learnt coefficient α on prediction ŷ
 - Expect poor results (without seasonality)
- how to do it with ML chain
 - Learning to predict further directly
 - Intrinsically compatible with exogenous variables



Exogenous factors is straightforward in ML : just add features in the dataset

- Another way to encode seasonality
- Using pandas to catch up prophet functions
 - Types of days
 - Hours...

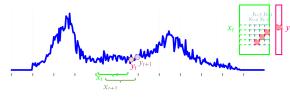
Example of time encoding : hour, day, week-end :



- Local statistics computations
 - Statistic moment
 - Frequency / power spectral density...
 - tsfresh
 - Hundreds of features...
 - … & test of relevant ones
- Classical feature engineering
 - Feature clustering, ...
- Target encoding
 - e.g. Average value on Monday / weekday / ...

 \Rightarrow pandas is required for rolling, date reading & target encoding...

pandas is essential for timeseries!



(m)	Introduction	Stat. Forecasting	ML forcasting	0000000000	Metrics & Anomalies	Pitfalls	Concl.		
5	Feature engineering								
	 Dependi 	ng on the appli		tenl more expert fe	discussions with experts				
	[Often] more expert features \Rightarrow more performance • Local statistics computations								
				abs_energy (X)	Retu	ns the absolute energy	of the time se		
				absolute_sum_of_changes (k) Retur	ns the sum over the ab	solute value of		
	 Statistic moment 			agg_autocorrelation (x, pa	ram) Calcu	lates the value of an ag	gregation func		
				agg_linear_trend (x, param) Calcu	llates a linear least-squa	ares regression		
	Frec	luency / power s	pectral densi	ty approximate_entropy (x, m,	r) Imple	ments a vectorized App	proximate entre		

tsfresh

- Hundreds of features...
- \blacksquare ... & test of relevant ones
- Classical feature engineering
 - Feature clustering, ...
- Target encoding
 - \blacksquare e.g. Average value on Monday / weekday / ...

 \Rightarrow pandas is required for rolling, date reading & target encoding...

abs_energy (x)	Returns the absolute energy of the time see
absolute_sum_of_changes (X)	Returns the sum over the absolute value of
agg_autocorrelation (x, param)	Calculates the value of an aggregation func
agg_linear_trend (x, param)	Calculates a linear least-squares regression
approximate_entropy (x, m, r)	Implements a vectorized Approximate entre
ar_coefficient (x, param)	This feature calculator fits the uncondition:
<pre>augmented_dickey_fuller (x, param)</pre>	The Augmented Dickey-Fuller test is a hype
autocorrelation (x, lag)	Calculates the autocorrelation of the specif
<pre>binned_entropy (x, max_bins)</pre>	First bins the values of x into max_bins equ
c3 (x, lag)	This function calculates the value of
<pre>change_quantiles (x, ql, qh, isabs, f_agg)</pre>	First fixes a corridor given by the quantiles
cid_ce (x, normalize)	This function calculator is an estimate for a

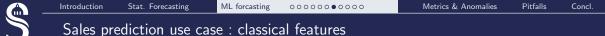
pandas is essential for timeseries!

- Nature of the data
 - Shops
 - Items
- Target :
 - Fine grain : predicting the amount of each items in each Shops
 - General : sales revenue

Idea : extracting features for all objects

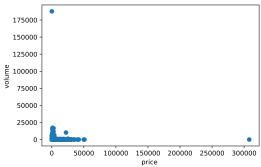
 \Rightarrow Exploit ML plasticity \Leftrightarrow hard to model with AR

K. Yacovlev, Kaggle notebook, 2019 https://www.kaggle.com/kyakovlev/1st-place-solution-part-1-hands-on-data

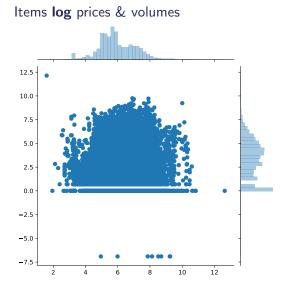


- Items (aggregated over all shops)
 - Item category (from expert, from name, ...)
 - Item general trends
 - Binary : Is deprecated / Is new
 - Price/volume categorization :
 - removing (or separating outliers)
 - linspace separation
 - histogram
 - clustering
- Shops
 - Same features + co-clustering with items
- Time
 - Black Friday, holidays, ...

Items prices & volumes

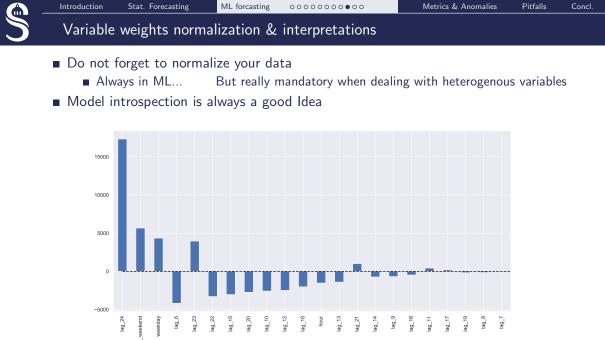


- Items (aggregated over all shops)
 - Item category (from expert, from name, ...)
 - Item general trends
 - Binary : Is deprecated / Is new
 - Price/volume categorization :
 - removing (or separating outliers)
 - linspace separation
 - histogram
 - clustering
- Shops
 - Same features + co-clustering with items
- Time
 - Black Friday, holidays, ...

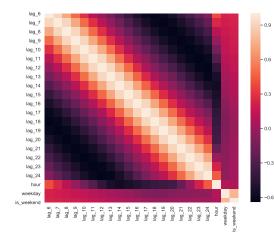


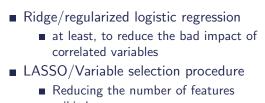
- Single shop prediction
 - with some features computed on multiple shops
- Multiple shop prediction
- Predicting all item per shop sales
- Feature engineering makes monovariate prediction very strong
- Deep learning (try to) tackles multivariate prediction
 - To extract relevant feature automatically
 - To find fine correlation between shop/item dynamics





Extracting many features (or even several) lead to this kind of data shape :





scikit-learn...

Amjad Abu-Rmileh, The Multiple faces of Feature importance in XGBoost https://towardsdatascience.com/ be-careful-when-interpreting-your-features-impor

Concl

Metrics & Anomalies

R squared

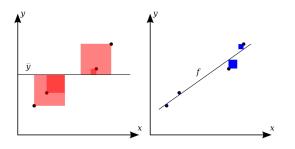
 $s_y^2 = \text{Empirical variance of } Y :$ $s_y^2 = \frac{1}{n} \sum_{i=1}^n (\hat{y}_i - \overline{y})^2 + \frac{1}{n} \sum_{i=1}^n (y_i - \hat{y}_i)^2$ $s_y^2 = \text{explained variance} + \text{residual variance}$

 $R^{2} = \frac{\sum_{i} (\hat{y}_{i} - \overline{y})^{2}}{\sum_{i} (y_{i} - \hat{y}_{i})^{2}} = \frac{\text{explained variance}}{\text{residual variance}}$

R squared

coefficient of determination (in econometrics it can be interpreted as a percentage of variance explained by the model)

$$R^2 = 1 - rac{SS_{residue}}{SS_{total}}$$



- 1 : all variance of the data explained \Rightarrow best results
- 0 : worst model

Mean Absolute error

$$MAE = \frac{\sum_{i=1}^{n} |y_i - \hat{y}_i|}{n}$$

Median Absolute Error (robust to outliers)

$$MedAE = median(|y_1 - \hat{y}_1|, ..., |y_n - \hat{y}_n|)$$

Mean Absolute Percentage Error

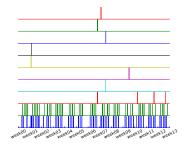
$$MAPE = \frac{100}{n} \sum_{i=1}^{n} \frac{|y_i - \hat{y}_i|}{y_i}$$

Choose the metric adapted to your data to evaluate... Even if you (often) use MSE as a learning criterion Working on sparse data (e.g. validations of a single user in public transportation) Lots of 0 in the ground truth :

- $MAPE = \frac{100}{n} \sum_{i=1}^{n} \frac{|y_i \hat{y}_i|}{y_i}$ diverges Solutions :
 - Rough aggregation over time to reduce sparseness
 - Dedicated metrics
 - ... SMAPE :

$$\mathsf{SMAPE}_{1} = \frac{100\%}{n} \sum_{t=1}^{n} \frac{|y_{t} - \hat{y}_{t}|}{\left(|\hat{y}_{t}| + |y_{t}|\right)/2} \quad \text{or} \quad \mathsf{SMAPE}_{2} = \frac{\sum_{t=1}^{n} |y_{t} - \hat{y}_{t}|}{\sum_{t=1}^{n} (\hat{y}_{t} + y_{t})}$$

Not magic... but sometimes robust enough to build an operational system



Something that is not supposed to append. Different cases :

- Outlier / error of measurement
- Distance between observations and predictions
- Anomaly tag labeled in the dataset

 \Rightarrow we focus on distances

Required for in-depth evaluation & for model monitoring in production

Computing bounds very easily :

```
mae = mean_absolute_error(series[window:], prediction[window:])
deviation = np.std(series[window:] - prediction[window:])
lower_bond = prediction - (mae + scale * deviation)
upper_bond = prediction + (mae + scale * deviation)
```

```
scale = 1.96 (often)
```

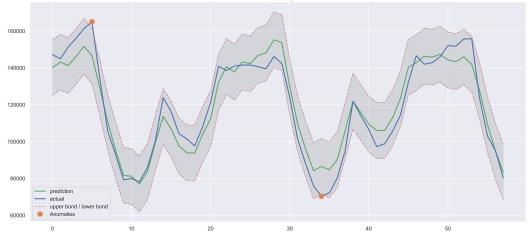
A more robust approach (still easy to implements)

```
cv = cross_val_score(model, series[window:], target[window:],
scoring="neg_mean_absolute_error")
mae = cv.mean() * (-1)
deviation = cv.std()
lower_bond = prediction - (mae + scale * deviation)
upper_bond = prediction + (mae + scale * deviation)
```

```
scale = 1.96 (often)
```

<u> </u>	Introduction	Stat. Forecasting	ML forcasting	Metrics & Anomalies	00000	Pitfalls	Concl.
5	Expected	d results					

Mean absolute percentage error 5.45%



Anomalies are prediction outside the confidence bounds

PITFALLS IN ML FOR TIME SERIES

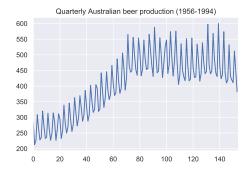
Difficult case : what happen when the test distribution diverges from the training one?

Predicting on long term basis with SARIMA : trend + season

Autralian beer production : typical series with abrupt change

Time Series Nested Cross-Validation, Courtney Cochrane https://towardsdatascience.com/time-series-nested-cross-validation-76adba623eb9

Difficult case : what happen when the test distribution diverges from the training one?



Beer prod. Estimation

Quarterly Australian beer production (1956-1994)

Autralian beer production : typical series with abrupt change

Predicting on long term basis with SARIMA : trend + season

Time Series Nested Cross-Validation, Courtney Cochrane https://towardsdatascience.com/time-series-nested-cross-validation-76adba623eb9

- $+\,$ A good example : trend may change abruptly in many situations
- Who has ever use the same (SARIMA) model 10 years long without :
 - retraining
 - feeding the model with real data regularly
- A particular instance of iid hypothesis failure : very classical in ML

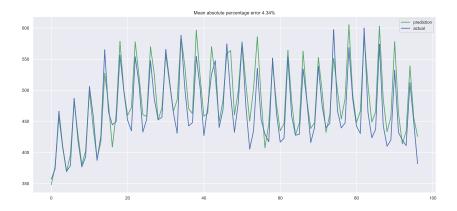
Detection

- Human monitoring
- Anomaly detection
- Change detection

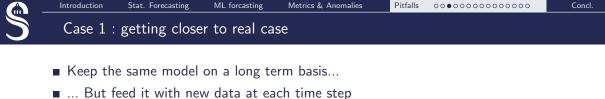
Resolution

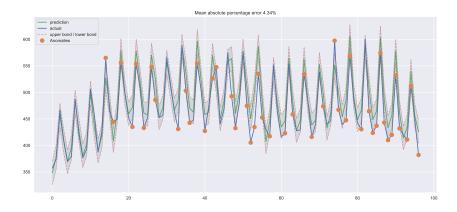
- Re-train models regularly
- Evaluate your model on recent Data (even in production)
 - Perform anomaly detection, raise alarms

- Keep the same model on a long term basis...
- \blacksquare ... But feed it with new data at each time step

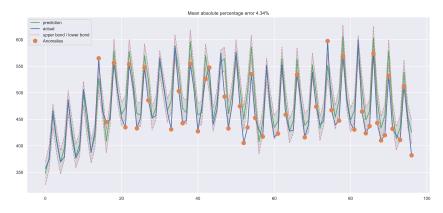


Difficult to estimate the quality of the prediction



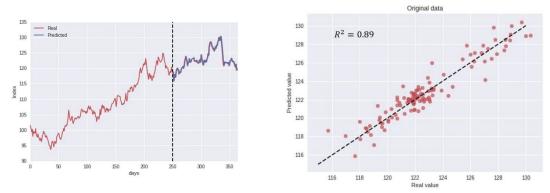


 \Rightarrow Adding confidence bounds & alarm detection



Alterative : Monitoring the results of a strong baseline

 \Rightarrow Results will converge between advanced model & baseline



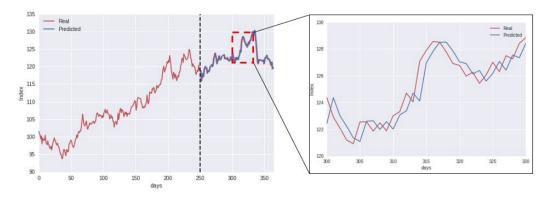
When you look at it from afar

How (not) to use Machine Learning for time series forecasting : Avoiding the pitfalls, Vegard Flovik https://towardsdatascience.com/how-not-to-use-machine-learning-for-time-series-forecasting-avo

But actually :

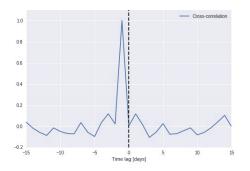
- Data are generated from a random walk...
- \Rightarrow it can't be predicted !

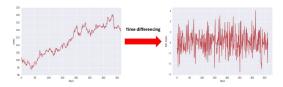
How (not) to use Machine Learning for time series forecasting : Avoiding the pitfalls, Vegard Flovik https://towardsdatascience.com/how-not-to-use-machine-learning-for-time-series-forecasting-avo



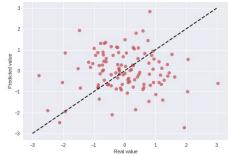
A very basic solution : $\hat{y}_t = y_{t-1}$

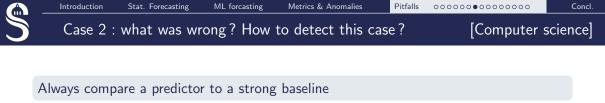
- Do not use ARMA on non stationary signals
- Measure cross-correlation between y and ŷ.

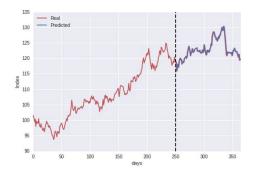




Time differenced data







- Choose the good baselines
 Linear ? ⇒ not sufficient
 Time series ⇒ at least
 Previous value : ŷ_t = y_{t-1}
 Moving average : ŷ_t = ¹/_T ∑_i y_{t-i}
- 1 Compare the results in CV...
- 2 And the standard deviation on the results.

General baseline for time series :

- Previous value : $\hat{y}_t = y_{t-1}$
- Moving average : $\hat{y}_t = \frac{1}{T} \sum_i y_{t-i}$
- Predict always the most frequent value (rarely efficient on time series)

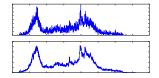
Seasonal data :

- Take one averaged season
 - e.g. in public transportation : average weekday or average Monday
 prediction for every Monday
 - Strong baseline on specific dataset
 - Very strong baseline beyond T + 1

ML classical baseline

Linear model

• K-nn : all
$$y_{t-1} = \alpha$$
 lead to $y_t = \beta$



One Wednesday / averaged Wednesday on a particular subway station

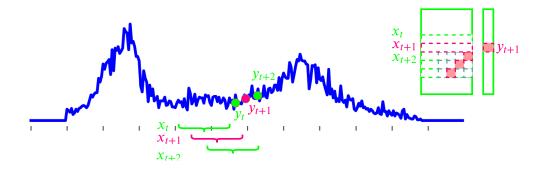
Classical block cross-validation = seeing the future

- cheating on any unpredictable (/ not modeled) trends
 - Difficult prediction problem turns into to a simpler interpolation problem
- side effect at the beginning/end of each test split (cf next slide)

Iteration 1	Test	Train	Train	Train	Train	
Iteration 2	Train	Test	Train	Train	Train	
Iteration 3	Train	Train	Test	Train	Train	
Iteration 4	Train	Train	Train	Test	Train	
Iteration 5	Train	Train	Train	Train	Test	

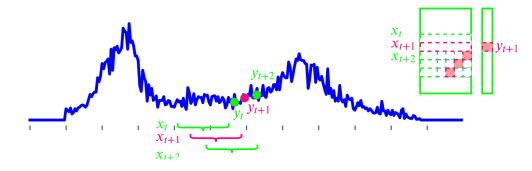
Leonard J. Tashman, Int. Jour. of Forecasting, 2000 Out-of-sample tests of forecasting accuracy : an analysis and review

Shuffled cross validation : test samples are surrounded by training ones



- Target x_{t+1} : find the most correlated points $\{x_c\}$ in the training set
- Add criterion to detect the better one regarding temporal evolution
- Predict $x_c^*[end]$
- \Rightarrow it can even work to predict at T + N!

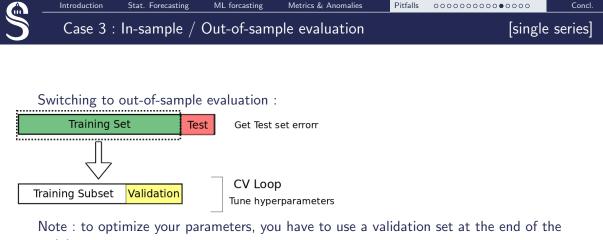
Shuffled cross validation : test samples are surrounded by training ones



The only thing evaluated in this procedure is :

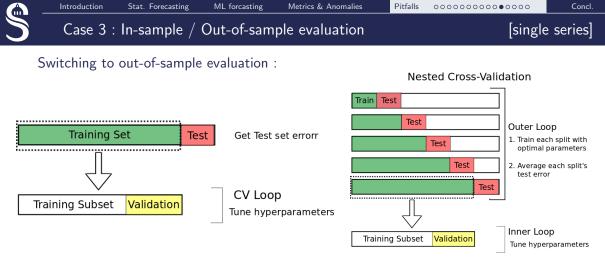
Is y_{t+1} close to y_t most of the time? ... And it is often the case!

 \Rightarrow You may obtain a prediction accuracy better that the intrinsic noise level !



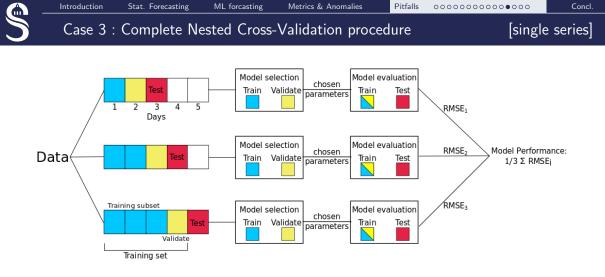
training set.

Leonard J. Tashman, Int. Jour. of Forecasting, 2000 Out-of-sample tests of forecasting accuracy : an analysis and review



Note : to optimize your parameters, you have to use a validation set at the end of the training set.

Leonard J. Tashman, Int. Jour. of Forecasting, 2000 Out-of-sample tests of forecasting accuracy : an analysis and review



Good news : it is already implemented in scikit-learn. \Rightarrow just use it ! from sklearn.model_selection import TimeSeriesSplit

Case 3 : Nested Cross Validation over a population

Interdependent samples

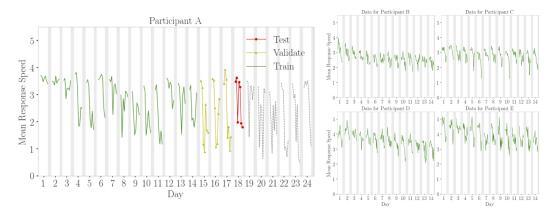
e.g. evolution of the temperature in multiple cities / sales in different shops

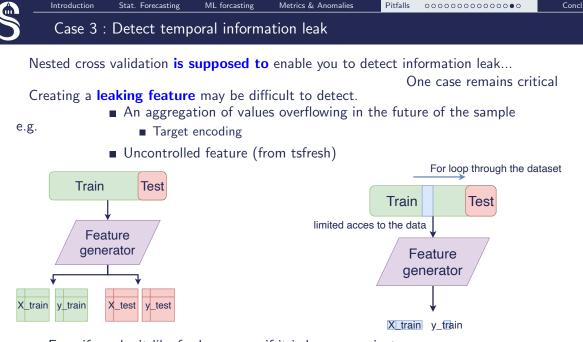
- Apply the Nested CV on all samples
- Make sure that Train/test frontier corresponds to an absolute time-stamp

Independent samples e.g. Patient response to a treatment

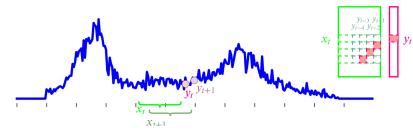
Interdependent samples

Independent samples e.g. Patient response to a treatment





 \Rightarrow Even if we don't like for loop, even if it is less convenient...



As in any machine learning use case, dealing with time series requires normalization :

Normalization by columns

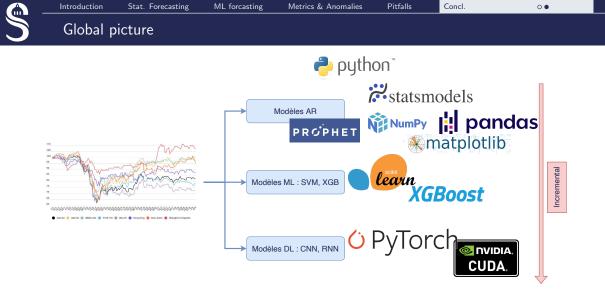
- ⇒ Great impact of future measurements on the data
- \Rightarrow Destruction of the temporal dependencies

Normalization by line

- Impact of the future measurements on the data
- ... But limited impact
 - Normalizing by the max
 - Even better : normalizing by the 99% percentile
 - Very stable information that could have been given by an expert

CONCLUSION

- Analysing local dynamics = Auto Regressive models
 - \Rightarrow Useful for close prediction
 - $\Rightarrow~$ Not sufficient for mid/long term prediction
- Distinguish : past values ; trends & seasonality ; exogenous factors...
 - \Rightarrow Impact of specific pattern?
 - $\Rightarrow\,$ Bridge between time series prediction \Leftrightarrow source separation
- Pitfalls are numerous...
 - $\Rightarrow~$ Don't forget your statistical references
 - \Rightarrow Always consider a XGBoost/Random Forest option... and compare it to the right baselines
 - $\Rightarrow\,$ Beware of magical features / unrealistic good prediction (!)



- Different approaches, different paradigms/syntaxes
- Different costs, different expectations
- Different hardware supports
- Great tools... But remind the time frame