
A (VERY) QUICK TOUR OF
DEEP LEARNING FOR
TIME-SERIES ANALYSIS

June 17th, 2022

Vincent Guigue



Introduction



Introduction MLP CNN RNN SOTA Conclusion

General idea of deep learning

Issues :

Extracting
relevant features

... by multi-task learning

on multivariate time
series

Raw
data

Convolution,
fully

connected, ...

Representation
learning step

Learned
representation

Decision
step(s)

Tasks

Learning mechanism

2/41



Introduction MLP CNN RNN SOTA Conclusion

General idea of deep learning for time series

Learn non linear combination of features (but no more than xgb...)

Extract complex features = discriminant patterns ... In a noisy environment

⇒ Once again, we have to think about our hypothesis

ALLIANCE INTERNAL

2012:  rupture technologique
16 Septembre 2021Introduction à l'IA

E n t r é e  d u  d e e p l e a r n i n g e n  v i s i o n
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From Multi-Layer
Perceptron to
Time Delay Neural Net-
works
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Historical neural architectures

TDNN : Time Delay Neural Networks
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Applications

TDNN : Time Delay Neural Networks

Originally : Multi Layer Perceptron on lag variables

By extension : Any neural architecture on a temporal sliding
window

Applications :

Pattern classification :

Phoneme classification (speech recognition)
Handwriting recognition

Signal processing

Echo and reverberation elimination

A. Waibel et al., IEEE Trans. ASSP, 1989
Phoneme Recognition Using Time-Delay Neural Networks
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A non linear ML approach on rolling window

Very close to XGBoost...

But more subject to overfitting than ensembling approaches

⇒ Compare them on classical ML procedure (while avoiding the pitfalls !)
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Convolutional Neural
Networks
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CNN History

One of the first breakthrough in machine learning : zip code recognition in 1989

CNNs
visualization

Machine Learning & Deep Learning   - P. Gallinari115

` Hand writing recognition  (Y. LeCun Bell labs 1989) 

In 1989, 50 people in the world were
able to set a CNN...

the others were waiting for SVM !

In 2010, 5000 people were able to set
CNNs... That leads to AlexNet !
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Definition of a Convolutional Neural Networks

Sliding filter

Fully
connected

Error back propagation & coef. learning

Convolutional filter (few parameters)

Signal representation + decision layer (more expensive)

Idea : learning to extract relevant
features wrt a given task

⇒ Signal classification / pattern detection

8/41



Introduction MLP CNN RNN SOTA Conclusion

CNN, pooling & multiplication of the filters

Sliding filter

Fully
connected

max / average pooling

Adding a pooling layer : 1 Reduce the cost of the fully connected layer

2 Add (slight but efficient) translation invariance
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CNN, pooling & multiplication of the filters

Sliding filters

Fully
connected

max / average pooling

Even in 2009 = SVM golden age, CNN > SVM in handwriting reco.
⇒ Investigate variations of the signal in input
⇒ + Translation invariance
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CNN & variable length time series

Sliding filters

Fully
connected

max / average pooling

Enlarging pooling operation :

1 Reduce the cost of the fully connected layer

2 Each filter acts as a pattern detector

3 Fixed size signal representation

4 No more temporal descriptors in the representation
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Multi-layer CNN

State of the art in vision architecture

An in depth explanation of classical internet illustrations

Sliding filters

Fully
connected

max / average
pooling

Sliding filters

11/41



Introduction MLP CNN RNN SOTA Conclusion

Multi-layer CNN

State of the art in vision architecture
An in depth explanation of classical internet illustrations

Sliding filters

Fully
connected

max / average
pooling

Sliding filters

11/41



Introduction MLP CNN RNN SOTA Conclusion

Dilated CNN [Yu 2016]

To analyse efficiently multi-scale aspects of a signal :

Segmentation�
Dilated convolutions�(Yu 2016)

Machine Learning & Deep Learning   - P. Gallinari157

` ͳ D example

Dilatation 1

Dilatation 2

Dilatation 4

Receptive field 3

Receptive field 7

Receptive field 15

Less computation

More efficiency
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2D/3D CNNCNNs
Convolution:�filter�size�and�stride

Machine Learning & Deep Learning   - P. Gallinari116

` 2D convolution, stride ͳ, from 3x3 image to 2x2 image, 2x2 filter

` 2 D convolution, stride 2, from 4x4 image to 2x2 image, 2x2 filter

ଵݔ ଶݔ ଷݔ
ସݔ ହݔ ݔ

ݔ ଼ݔ ଽݔ

ଵݕ ଶݕ
ଷݕ ସݕ

ଵݓ ଶݓ
ଷݓ ସݓ

Filter

ଵݕ ൌ ଵݔଵݓ  ଶݔଶݓ  ସݔଷݓ  ହݔସݓ

ଵݔ ଶݔ ଷݔ ସݔ
ହݔ ݔ ݔ ଼ݔ
ଽݔ ଵݔ ଵଵݔ ଵଶݔ

ଵଷݔ ଵସݔ ଵହݔ ଵݔ

ଵݕ ଶݕ
ଷݕ ସݕ

ଵݓ ଶݓ
ଷݓ ସݓ

Filter

ଵݕ ൌ ଵݔଵݓ  ଶݔଶݓ  ହݔଷݓ  ݔସݓ

+ pooling on spatial 2D windows
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2D/3D CNN
CNNs
on�multiple�channels

Machine Learning & Deep Learning   - P. Gallinari120

` This generalizes to any number of input channels, and filters
` Below C input channels and 2 outputs

ܥ

ܪ

ܹ

ܥ

ݓ

݄

ܥ

ݓ

݄

inputs d filters – stride 1 d outputs

ܹ െݓ  ͳ

ܪ
െ
݄

ͳ

*

Most of the time, we perform N× 2 dimensional convolutions instead of 3D conv.
⇒ It is linked to the nature of the data
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Deep CNN

Image analysis / object
recognition : AlexNet,
VGG, ...

14/41
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Image Reconstruction

Other use cases where image reconstruction is required :
Segmentation
EncoderͲDecoder Ͳ Other models based on�the�same ideas

Machine Learning & Deep Learning   - P. Gallinari153

`

SegNet – (Badrinarayanan 2017)

U-Net, (Ronneberger 2015)

⇒ We will come back to this point in the perspectives 15/41
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Seizure detection

An application in signal classification : detecting seizure in EEG

CNN : a very elegant (& efficient) way to deal with
multivariate time-series

P.W. Mirowski et al., IEEE, 2008
Comparing SVM and Convolutional Networks for Epileptic Seizure Prediction from Intracranial EEG

M Zhou et al., F. in Neuroinformatics, 2018
Epileptic Seizure Detection Based on EEG Signals and CNN
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Seizure detection

An application in signal classification : detecting seizure in EEG

Recent architectures are
mainly based on

Time frequency
decomposition

Image analysis

P.W. Mirowski et al., IEEE, 2008
Comparing SVM and Convolutional Networks for Epileptic Seizure Prediction from Intracranial EEG

M Zhou et al., F. in Neuroinformatics, 2018
Epileptic Seizure Detection Based on EEG Signals and CNN
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CNN & Time-Frequency representation

The example of source separation (that makes great progress over the last 5 years)

Original problem : ICA (independant componant analysis)
SVD algorithm (unsupervised) in time or time frequency domain :

17/41
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CNN & Time-Frequency representation

The example of source separation (that makes great progress over the last 5 years)

New Problem :
A supervised classification problem in the time frequency domain

Workshop track - ICLR 2018

CONVOLUTIONAL VS. RECURRENT NEURAL NET-
WORKS FOR AUDIO SOURCE SEPARATION

Shariq Mobin*, Brian Cheung*, and Bruno Olshausen
Redwood Center for Theoretical Neuroscience
University of California, Berkeley
{shariqmobin,bcheung,baolshausen}@berkeley.edu

ABSTRACT

We propose a convolutional neural network as an alternative to recurrent neural
networks for separating out individual speakers in a sound mixture. Our results
achieve state-of-the-art results with an order of magnitude fewer parameters. We
also characterize the robustness of both models to generalize to three different
testing conditions including a novel dataset. We create a new dataset RealTalkLibri
which evaluates how well source separation models generalize to real world mix-
tures. Our results indicate the acoustics of the environment have significant impact
on the performance of all neural network models, with the convolutional model
showing superior ability to generalize to new environments.

1 INTRODUCTION

Inferring the individual speaker waveforms that make up a mixture requires strong prior knowledge
on the representation of speaker waveforms. Recently, neural network models have been shown to
accomplish state-of-the-art results on this task (Hershey et al., 2016; Chen et al., 2017; Isik et al.,
2016), see Figure 4.

These models have focused on using Bi-directional Long short-term memory (BLSTM) (Graves
et al., 2005) architectures on simulated mixtures of two speakers. However, convolutional neural
networks have been shown to exceed the performance of many other neural network architectures
(Yu & Koltun, 2015; Sigtia et al., 2016). We show our CNN architecture exceeds the performance of
previous models on simulated mixtures and real-world mixtures which we introduce in this work.

Figure 1: (Left to Right) Spectrogram of the mixture, source estimates using the oracle (red and blue),
source estimates using our method.

2 DEEP ATTRACTOR FRAMEWORK

2.1 EMBEDDING THE MIXED WAVEFORM

Chen et al. (2017) propose a framework for single-channel speech separation. x 2 R⌧ is a raw
input signal of length ⌧ and X 2 RF⇥T is its spectrogram computed using the Short-time Fourier
transform (STFT). Each time-frequency bin in the spectrogram is embedded into a K-dimensional
latent space V = f(X; ✓) 2 RF⇥T⇥K by a transformation f(·; ✓) with parameters ✓.

*Equal Contribution

1
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Input/output sizes of CNN

Lightwise architecture

Easy to catch hierachical dependancies
... And easy to set different kernel size (hour, day, week,
...)

Made for fix sized entries...
but padding may help

CNN = often use for identification / pattern
classification... But not only

Features can be temporal (default) or not (pooling)

Padding :

Signals

0 0 0

0 0
0 0 0

0 0
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CNN Parameters

One input = T

Kernel: K = 4

Nb filter F = 2

Stride: S = 3

hidden layer: 
H = [(T - K + P) / S + 1] x F

0 0

Padding = P

Implemntation is easy...
once you are able to compute properly the dimensions of all layers

19/41
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Learning Neural Network

Gradient Backpropagation = gradient chain rule over the layer

Gradient = easy to compute on the last layer...

... and gradient of the previous layers = easy to compute knowing the nex gradient
Good news : nothing to do when using existing modules

Just encode the chain dependancy

1 c l a s s EasyNet ( nn . Module ) :
2 def i n i t ( s e l f , num c l a s s e s ) :
3 super ( EasyNet , s e l f ) . i n i t ( )
4 s e l f . conv1 = to r ch . nn . Conv1d (1 , 1 , 1 ) # => y i e l d s 24 v a l u e s
5 s e l f . conv2 = to r ch . nn . Conv1d (1 , 1 , 2 ) # => y i e l d s 23 v a l u e s
6 s e l f . conv4 = to r ch . nn . Conv1d (1 , 1 , 4 ) # => y i e l d s 21 v a l u e s
7 s i z e a l l c o n v s = 21+23+24 # To complete
8 s e l f . t1 = nn . L i n e a r ( s i z e a l l c o n v s , 24)
9 s e l f . t2 = nn . L i n e a r (24 , num c l a s s e s )

10

11 def f o rwa rd ( s e l f , x ) :
12 a l l c o n v s = to r ch . ca t ( [ s e l f . conv1 ( x ) , s e l f . conv2 ( x ) , s e l f . conv4 ( x ) ] , dim=−1)
13 f i r s t t r a n s f o r m = to r ch . tanh ( s e l f . t1 ( a l l c o n v s ) )
14 s e c ond t r an s f o rm = s e l f . t2 ( f i r s t t r a n s f o r m )
15 output = s e cond t r an s f o rm
16 r e t u r n output

20/41
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RNN History

Appears in the 1990’

Beautiful architecture... But hard to train

⇒ no real world application until 2006 (A. Graves)

Today state of the art in :

Speech / handwriting transcription
Machine translation
NLP : language understanding / generation

RNNs local�connections�(90s)

Machine Learning & Deep Learning   - P. Gallinari164

` Several local connection architectures proposed in the 90s

Fixed weights
Only the forward weights are learned: 
SGD

All weights learned
୲࢙ ൌ ݂ ௧ିଵ࢙ܹ  ୲࢙௧ܷ࢞ ൌ ݂ ௧ࢉܹ  ௧ܷ࢞

௧࢞

Target ࢟௧

௧࢞

Target ࢟௧

copy

ଵିݐ

ଶିݐ

௧࢙௧࢙

ܷ

ܸ

ܹ
ܹ

ܷ

ܸ

௧ࢉ
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Modern Recurrent Neural Network & LSTM : Rebirth of RNN

Unrolled a RNN for a better understanding :

Lightwise (in theory)... ht = W1xt +W2ht−1

... But impossible(/hard) to parallelise ⇔ sequencial dependancies

Quite costly in practice

Chris Olah’s blog http://colah.github.io/posts/2015-08-Understanding-LSTMs/

22/41
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Modern Recurrent Neural Network & LSTM : Rebirth of RNN

ht = W1xt +W2ht−1

x̂t+1 = W3ht

Play with W1 : multivariate timeseries ; contexte modelling ; ...

Play with W3 : multiple outputs

Chris Olah’s blog http://colah.github.io/posts/2015-08-Understanding-LSTMs/

22/41
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Modern Recurrent Neural Network & LSTM : Rebirth of RNN

Gradient vanishes & long term
dependancies are not modeled....

Chris Olah’s blog http://colah.github.io/posts/2015-08-Understanding-LSTMs/

22/41
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Modern Recurrent Neural Network & LSTM : Rebirth of RNN

The phenomenon has been understood & (partially) overcome :
Neurons learn what should be kept in memory and what should be forgotten

Gated architecture

S. Hochreiter, J. Schmidhuber, Neural computation 1997
Long short-term memory

Chris Olah’s blog http://colah.github.io/posts/2015-08-Understanding-LSTMs/

22/41
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RNN architecture : different settings

One to many : image annotation

many to one : signal classification

many to many : POS/NER tagging, sequence annotation

seq to seq : machine translation

Karpathy’s blog http://karpathy.github.io/2015/05/21/rnn-effectiveness/

23/41
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RNN architecture : different settings

Seq-2-seq architecture are also known as encoder-decoder architecture :
red & blue part can be split into 2 distinct models

Karpathy’s blog http://karpathy.github.io/2015/05/21/rnn-effectiveness/

23/41
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Signal classification / many to one architecture

Architecture variation

24/41
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Learning a sequence model & generate new data :

Training a model to predict the next character given a sequence :
⇒ Sampling & beam search

x

RNNs
Language models

Machine Learning & Deep Learning   - P. Gallinari187

` Inference
` Suppose the RNN has been trained
` Inference processes by sampling from the predicted distribution

x

s

ෝ࢟

U

V
W
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SamplingSamplingSampling
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Learning a sequence model & generate new data :

Training a model to predict the next character given a sequence :
⇒ Sampling & beam search

Language models – example
(Karpathy 2015Ͳ https://karpathy.github.io/2015/05/21/rnneffectiveness/)

Machine Learning & Deep Learning   - P. Gallinari189

` Training on Tolstoy’s War and Peace a character language model
` Stacked recurrent networks (LSTM)

25/41
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Karpathy’s demonstration on char2char

1 c l a s s RNN:
2 # . . .
3 def s t e p ( s e l f , x ) :
4 # update the h idden s t a t e
5 s e l f . h = np . tanh ( np . dot ( s e l f .W hh , s e l f . h ) + np . dot ( s e l f .W xh , x ) )
6 # compute the output v e c t o r
7 y = np . dot ( s e l f .W hy , s e l f . h )
8 r e t u r n y

+ multilayer architecture :

1 y1 = rnn1 . s t ep ( x )
2 y = rnn2 . s t e p ( y1 )

A. Karpathy’s blog : The Unreasonable Effectiveness of Recurrent Neural Networks
http://karpathy.github.io/2015/05/21/rnn-effectiveness/
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Karpathy’s demonstration on char2char

Sample of Shakespeare generation
PANDARUS:

Alas, I think he shall be come approached and the day

When little srain would be attain’d into being never fed,

And who is but a chain and subjects of his death,

I should not sleep.

Second Senator:

They are away this miseries, produced upon my soul,

Breaking and strongly should be buried, when I perish

The earth and thoughts of many states.

A. Karpathy’s blog : The Unreasonable Effectiveness of Recurrent Neural Networks
http://karpathy.github.io/2015/05/21/rnn-effectiveness/

27/41
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Karpathy’s demonstration on char2char

Wikipedia sample
Naturalism and decision for the majority of Arab countries’ capitalide was

grounded by the Irish language by [[John Clair]], [[An Imperial Japanese

Revolt]], associated with Guangzham’s sovereignty. His generals were the

powerful ruler of the Portugal in the [[Protestant Immineners]], which

could be said to be directly in Cantonese Communication, which followed a

ceremony and set inspired prison, training. The emperor travelled back to

[[Antioch, Perth, October 25|21]] to note, the Kingdom of Costa Rica,

unsuccessful fashioned the [[Thrales]]

A. Karpathy’s blog : The Unreasonable Effectiveness of Recurrent Neural Networks
http://karpathy.github.io/2015/05/21/rnn-effectiveness/
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Karpathy’s demonstration on char2char

Linux code generation
*

* Increment the size file of the new incorrect UI_FILTER group information

* of the size generatively.

*/

static int indicate_policy(void)

{

int error;

if (fd == MARN_EPT) {

/*

* The kernel blank will coeld it to userspace.

*/

if (ss->segment < mem_total)

unblock_graph_and_set_blocked();

else

ret = 1;

goto bail;

}

A. Karpathy’s blog : The Unreasonable Effectiveness of Recurrent Neural Networks
http://karpathy.github.io/2015/05/21/rnn-effectiveness/
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State Of The Art to represent a sequence : Bi-LSTM

LSTM

+ Sequential modeling

− Sequential dependencies ! = partial modeling

Bi-dimensional
representation [S1, S

′
1] is

more powerful
representation of the
sentence S than each
single representation.

Classical notation : s = [−→s ,←−s ]

30/41
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Introducing physical models in RNN

• Several	NN	use	skip	connections
• e.g.	ResNet

• ResnetModule

• Changes	the	function composition	perspective
• Input	𝑥 is progressively modified by	a	residual 𝑓 𝑥, 𝜃
• 𝑥 information	 is somewhat preserved in	the	forward propagation

𝑥%&' = 𝑥% + 𝑓(𝑥%,𝜃%)𝑥%
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Introducing physical models in RNN
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Introducing physical models in RNN

Great perspective :

to combine simulation & data analysis

to introduce diffusion process into ML
model

... And to enforce consistent
behaviour of ML model !

31/41
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End to end architectures

From next value prediction to sequence encoding
= translation : from word for word translation to sentence encoding

Multi-task : enhancing feature extraction ?
Archi. plasticity + non convex formulation

⇒ opportunities for business constraint encoding

Encoder

Z

D
ec
od
er

Latent
representation

Prediction

Anomaly
detection

Business constraints on
sample/pairs/lists

enforce similarities/differences
ranking
business rules

Translation

32/41
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Various neural architectures to deal with multivariate time series

CNN

Different filters for each channel / same filters

Sliding filters

Fully
connected

max / average pooling

RNN :

no problem to give a vector as input at each
time step

RNNs
Dynamics�of�RNN�– unfolding the�RNN

Machine Learning & Deep Learning   - P. Gallinari167
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Many to many, e.g. speech 
or handwriting decoding

Many to one, e.g. 
sequence classification

One to many, e.g. image 
annotation

Many to many, e.g. 
translation 
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Modeling contextual information with RNN

Modeling a public transportation system :

Station Day of the week Hour

Under review as a conference paper at ICLR 2019

We wish to see if the model is able to learn and discover meaningful representations of such temporal
entities. Therefore, for each recurrent architectures we add the possibility to concatenate temporal
embeddings to the observations. It is noteworthy that the temporal embeddings are shared across
every networks i.e. there is one set of embeddings for the entire Univariate architecture, and not one
different set per station.

Similarly to the way we dealt with spatial context, we could design multivariate and univariate
architectures for days and time-steps. However we lack data to learn such models and the overfitting
risk would be especially high for the day of the week scale.

Day embeddings We first introduce embeddings corresponding to the day of the week, via a
matrix (zd)d={1,..,7} 2 R7⇥�d containing 7 different embeddings.

Because we focus on fully-contextual models we only present in Equation 4 the prediction in the
Spatial case, but temporal embeddings can be used for the other architectures as well.

8(d, s, t) 2 {1, .., 7}⇥{1, .., S}⇥{1, .., T �1}, x̂s
d,t+1 = D(hs

t+1) = D(E(c(xs
d,t, z

d, zs), ht))
(4)

Time-step embeddings Similarly, the number of logs is very dependent on the time of the day,
with notable morning and evening peak hours separated by off-peak time. Therefore we learn a
matrix of embeddings (zt)t={1,..,T�1} 2 RT�1⇥�t . Prediction in the Spatial case is presented in
Equation 5.

8(s, t) 2 {1, .., S}⇥ {1, .., T � 1}, x̂s
t+1 = D(hs

t+1) = D(E(c(xs
t , z

t, zs), ht)) (5)

These embeddings can be learned using each of the architectures presented before and the two types
of temporal embeddings can obviously be combined. An illustration for the Spatial model with day
and time embeddings is presented in Figure 4.

...

Observation

...

Prediction

Recurrent encoder E 

Linear decoder D

Figure 4: Computing predictions for a particular station s using the spatial architecture with temporal
context. Given a day d, at each step t, the observed value xs

t is concatenated with three embeddings
representing the station, the day and the time, respectively zs 2 R�s , zd 2 R�d and zt 2 R�t . The
obtained vector is processed by a recurrent encoder E (common to all stations) to compute a hidden
state hs

t+1. Finally this vector is decoded into a single prediction x̂s
t+1

4 EXPERIMENTS

4.1 EXPERIMENTAL SETTINGS

We train our models on a data set provided by Ile-de-France Mobilites (the transport agency of the
Parisian region). It contains 256,028,548 logs (user, station, time) between October and Decem-

5

V. Guiguet et al., GRETSI 2019
Context aware forecasting for multivariate time series
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RNN & latent factor disentanglement

Enforcing disentanglement :

Station 12
Wednesday

Target :
encoding independtly
the station and the day

Cribier-Delande, ESANN, 2020
Time Series Prediction from Multiple Factors
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RNN & latent factor disentanglement

Proposed architecture :

Encoder :

2 independent RNN

or 2 independent CNN / MLP ...

Decoder :

Contextual CNN / RNN / MLP

Cribier-Delande, ESANN, 2020
Time Series Prediction from Multiple Factors
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RNN & latent factor disentanglement

Results :

Cribier-Delande, ESANN, 2020
Time Series Prediction from Multiple Factors
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Toward transfer & explainations

Idea : discretizing pieces of signals

CNN

Lookup Table

A B CDE ...

...

...

C A C  ... Pattern discretization = noise
reduction
as in matrix factorization / source
decomposition

Discrete sequence interpretation

(re)Discovering Markov Models !
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The Word2Vec paradigm (in NLP)

The distributional hypothesis [Harris et al. 1954]

Word that appear in similar contexts in text tend to have similar meanings.
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The Word2Vec paradigm (in NLP)

The distributional
hypothesis [Harris et al.
1954]

Word that appear in similar
contexts in text tend to have
similar meanings.

the cat sat on the mat

sat
Projection

w(t)

w(t-2) w(t-1) w(t+1) w(t+2)

Skip-gram

the cat sat on the mat

Sliding window (size = 5)

SUM

w(t)

w(t-2) w(t-1) w(t+1) w(t+2)

sat

CBOW

Sliding window (size = 5)

p(D = 1|wi ,wj ; θ) ⇒ proba. that wi and wj occur in the same
context

Modeling with a logistic function ; optimizing with Negative
Sampling
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The Word2Vec paradigm (in NLP)

Synonyms are close...
Semantic & grammatical geometric regularities arise
(One of the) first really transferable semantic basis
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W2V... On Signals

CNN

Lookup Table

A B CDE ...

...

...

C A C  ...

W2V finetuning

Reconstruction criterion

The opening of a new era
in signal processing (as in
NLP & vision earlier) ?

Franceschi et al., NeurIPS, 2019
Unsupervised scalable representation learning for multivariate time series
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Benefits of deep learning architecture for time series modeling

Efficient against noise

Extract very relevant features

& relevant pattern with translation invariance

Great software framework with GPU abilities

Plasticity of the architectures
Naturally adapted to complex inputs

Variable length signals
Multivariate signals

New opportunities in signal generation / classification / understanding
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The question of pre-training

Pre-training language model is a great advance for many application

Application with small corpus
Fine tuning

Pre-training vision model is a great advance for many application

Recognizing cats on images improve the performance in detecting default on
breaking pads...

⇒ It gives us a common knowledge of the world.

⇒ Is is possible to learn a language model for signals ?
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Global picture

Modèles AR

Modèles ML : SVM, XGB

Modèles DL : CNN, RNN

In
cr

em
en

ta
l

Different approaches, different paradigms/syntaxes
Different costs, different expectations
Different hardware supports
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