
TIME SERIES CONTINUOUS MODELING FOR
IMPUTATION AND FORECASTING WITH
IMPLICIT NEURAL REPRESENTATIONS

July, 2nd 2024, CAp

Etienne Le Naour, Louis Serrano, Léon Migus, Yuan Yin, Ghislain Agoua,
Nicolas Baskiotis, Patrick Gallinari, Vincent Guigue

Motivations TimeFlow architecture Experiments Conclusion References

Time Series = continuous phenomena / observe partially

Modeling Time Series as a continuous function
⇒ Deal with irregular sampling / unaligned sensors
⇒ Unified framework for Data imputation + Forecasting

Irregular
samples

Unaligned
sensors

Unaligned train
and test setting

2/22

Motivations TimeFlow architecture Experiments Conclusion References

Technical options

Gaussian Processes [Williams and Rasmussen, 2006]

Neural Processes [Kim et al., 2019]

Specific Architecture (e.g. mTAN) [Shukla and Marlin, 2021]

Implicit Neural Representation (INR) [Dupont et al., 2022]

From data to functa: Your data point is a function
and you can treat it like one

Emilien Dupont * 1 Hyunjik Kim * 2 S. M. Ali Eslami 2 Danilo Rezende 2 Dan Rosenbaum 3 2

Abstract
It is common practice in deep learning to repre-
sent a measurement of the world on a discrete grid,
e.g. a 2D grid of pixels. However, the underlying
signal represented by these measurements is often
continuous, e.g. the scene depicted in an image.
A powerful continuous alternative is then to repre-
sent these measurements using an implicit neural
representation, a neural function trained to output
the appropriate measurement value for any input
spatial location. In this paper, we take this idea to
its next level: what would it take to perform deep
learning on these functions instead, treating them
as data? In this context we refer to the data as
functa, and propose a framework for deep learn-
ing on functa. This view presents a number of
challenges around efficient conversion from data
to functa, compact representation of functa, and
effectively solving downstream tasks on functa.
We outline a recipe to overcome these challenges
and apply it to a wide range of data modalities in-
cluding images, 3D shapes, neural radiance fields
(NeRF) and data on manifolds. We demonstrate
that this approach has various compelling prop-
erties across data modalities, in particular on the
canonical tasks of generative modeling, data im-
putation, novel view synthesis and classification.
Code: github.com/deepmind/functa.

1. Introduction
In deep learning, data is traditionally represented by ar-
rays. For example, images are represented by their pixel
intensities, and 3D shapes by voxel occupancies, both at a
discrete set of grid coordinates tied to a particular resolu-

*Equal contribution: author order determined by coin flip.
1University of Oxford 2DeepMind 3University of Haifa.
Correspondence to: Emilien Dupont <dupont@stats.ox.ac.uk>,
Hyunjik Kim <hyunjikk@google.com>.

Proceedings of the 39 th International Conference on Machine
Learning, Baltimore, Maryland, USA, PMLR 162, 2022.
Copyright 2022 by the author(s).

Generative modeling Inference Classification

Figure 1. We convert array data into functional data parameterized
by neural networks, termed functa, and treat these as data points
for various downstream machine learning tasks.

tion. However, the underlying signal represented by these
arrays is often continuous. It is therefore natural to consider
representing such data with continuous quantities.

Recently, the idea of modelling data with continuous func-
tions has gained popularity. An image, for example, can
be represented by a continuous function mapping 2D pixel
coordinates to RGB values. When such a function is param-
eterized by a neural network, it is typically referred to as
an implicit neural representation (INR). INRs are generally
applicable to a wide range of modalities – indeed, various
works have demonstrated that INRs can be used to represent
images (Stanley, 2007; Ha, 2016), 3D shapes (Mescheder
et al., 2019; Chen & Zhang, 2019), signed distance func-
tions (Park et al., 2019), videos (Li et al., 2021), 3D scenes
(Mildenhall et al., 2020), audio (Sitzmann et al., 2020b) and
data on manifolds (Dupont et al., 2021b). This functional
representation offers a number of advantages over array
representations. It allows for dealing with data at arbitrary
resolutions, as well as data that is difficult to discretize such
as neural radiance fields (NeRF) for 3D scene representa-
tion (Mildenhall et al., 2020). Parameterizing such functions
as neural networks offers additional advantages, in terms
of memory-efficiency and as a single architecture that can
represent different data modalities.

In light of these advantages, we propose a new framework
that 1. converts array data to functional data parameterized
by neural networks, and 2. performs deep learning tasks

ar
X

iv
:2

20
1.

12
20

4v
3

 [c
s.L

G
]

10
 N

ov
 2

02
2

3/22

Motivations TimeFlow architecture Experiments Conclusion References

Implicit Neural Representation for Time Series

A first attempt: DeepTime [Woo et al., 2022]

Room for improvement:

Not designed for data imputation (forecasting only)
≈ Ridge Regression on sampled Fourier descriptors

Texte

4/22

TimeFlow architecture

Motivations TimeFlow architecture Experiments Conclusion References

NeRF encoding illustration [Mildenhall et al., 2021]

5/22

Motivations TimeFlow architecture Experiments Conclusion References

NeRF encoding illustration [Mildenhall et al., 2021]

1 NeRF encoding : t → γ(t), N frequency bands
γ(t) := (sin(πt), cos(πt), · · · , sin(2Nπt), cos(2Nπt))

2 Then γ(t) → MLP(γ(t); θ)
Activation functions are ReLU (i.e. ReLU(x) = max(0, x))

5/22

Motivations TimeFlow architecture Experiments Conclusion References

NeRF encoding illustration [Mildenhall et al., 2021]

5/22

Motivations TimeFlow architecture Experiments Conclusion References

Nice to fit a sample, but how to deal with a dataset?

Solution → Hypernetwork that modulate the INR [Dupont et al., 2022,
Klocek et al., 2019, Sitzmann et al., 2020]

6/22

Motivations TimeFlow architecture Experiments Conclusion References

Hypernetwork and auto-decoding [Dupont et al., 2022, Yin et al., 2022]

7/22

Motivations TimeFlow architecture Experiments Conclusion References

Insight on θ, w and the z (j)

γ(t)(= ϕ0) ∈ R64, z (j) ∈ R128

ϕℓ>0 ∈ R256

MLP: 5 layer

z (j): instance coding

θ and w = shared information across all
samples

MSE Loss

Training: [Zintgraf et al., 2019]
inner+outer loops

i) Sample adaptation =
freeze (θ,w) + 3 grad. steps on z (j)

[Second order grad. (Hessien comput.)]

o) (θ,w) optimization

Inference: i) + forward
not so fast...

8/22

Experiments

Motivations TimeFlow architecture Experiments Conclusion References

Imputation

Training

Inference

9/22

Motivations TimeFlow architecture Experiments Conclusion References

We compare to a wide range of baselines on three datasets

Table 1: Mean MAE imputation results on the missing grid only. τ stands for the
subsampling rate. Bold results are best, underlined results are second best.

Continuous methods Discrete methods

τ TimeFlow DeepTime mTAN Neural Process CSDI SAITS BRITS TIDER

0.05 0.324 ± 0.013 0.379 ± 0.037 0.575 ± 0.039 0.357 ± 0.015 0.462 ± 0.021 0.384 ± 0.019 0.329 ± 0.015 0.427 ± 0.010
0.10 0.250 ± 0.010 0.333 ± 0.034 0.412 ± 0.047 0.417 ± 0.057 0.398 ± 0.072 0.308 ± 0.011 0.287 ± 0.015 0.399 ± 0.009

Electricity 0.20 0.225 ± 0.008 0.244 ± 0.013 0.342 ± 0.014 0.320 ± 0.017 0.341 ± 0.068 0.261 ± 0.008 0.245 ± 0.011 0.391 ± 0.010
0.30 0.212 ± 0.007 0.240 ± 0.014 0.335 ± 0.015 0.300 ± 0.022 0.277 ± 0.059 0.236 ± 0.008 0.221 ± 0.008 0.384 ± 0.009
0.50 0.194 ± 0.007 0.227 ± 0.012 0.340 ± 0.022 0.297 ± 0.016 0.168 ± 0.003 0.209 ± 0.008 0.193 ± 0.008 0.386 ± 0.009

0.05 0.095 ± 0.015 0.190 ± 0.020 0.241 ± 0.102 0.115 ± 0.015 0.374 ± 0.033 0.142 ± 0.016 0.165 ± 0.014 0.291 ± 0.009
0.10 0.083 ± 0.015 0.159 ± 0.013 0.251 ± 0.081 0.114 ± 0.014 0.375 ± 0.038 0.124 ± 0.018 0.132 ± 0.015 0.276 ± 0.010

Solar 0.20 0.072 ± 0.015 0.149 ± 0.020 0.314 ± 0.035 0.109 ± 0.016 0.217 ± 0.023 0.108 ± 0.014 0.109 ± 0.012 0.270 ± 0.010
0.30 0.061 ± 0.012 0.135 ± 0.014 0.338 ± 0.05 0.108 ± 0.016 0.156 ± 0.002 0.100 ± 0.015 0.098 ± 0.012 0.266 ± 0.010
0.50 0.054 ± 0.013 0.098 ± 0.013 0.315 ± 0.080 0.107 ± 0.015 0.079 ± 0.011 0.094 ± 0.013 0.088 ± 0.013 0.262 ± 0.009

0.05 0.283 ± 0.016 0.246 ± 0.010 0.406 ± 0.074 0.318 ± 0.014 0.337 ± 0.045 0.293 ± 0.007 0.261 ± 0.010 0.363 ± 0.007
0.10 0.211 ± 0.012 0.214 ± 0.007 0.319 ± 0.025 0.288 ± 0.018 0.288 ± 0.017 0.237 ± 0.006 0.245 ± 0.009 0.362 ± 0.006

Traffic 0.20 0.168 ± 0.006 0.216 ± 0.006 0.270 ± 0.012 0.271 ± 0.011 0.269 ± 0.017 0.197 ± 0.005 0.224 ± 0.008 0.361 ± 0.006
0.30 0.151 ± 0.007 0.172 ± 0.008 0.251 ± 0.006 0.259 ± 0.012 0.240 ± 0.037 0.180 ± 0.006 0.197 ± 0.007 0.355 ± 0.006
0.50 0.139 ± 0.007 0.171 ± 0.005 0.278 ± 0.040 0.240 ± 0.021 0.144 ± 0.022 0.160 ± 0.008 0.161 ± 0.060 0.354 ± 0.007

TimeFlow improvement / 24.14 % 50.53 % 31.61 % 36.12 % 20.33 % 18.90 % 53.40 %

10/22

Motivations TimeFlow architecture Experiments Conclusion References

We compare to a wide range of baselines on three datasets

Table 1: Mean MAE imputation results on the missing grid only. τ stands for the
subsampling rate. Bold results are best, underlined results are second best.

Continuous methods Discrete methods

τ TimeFlow DeepTime mTAN Neural Process CSDI SAITS BRITS TIDER

0.05 0.324 ± 0.013 0.379 ± 0.037 0.575 ± 0.039 0.357 ± 0.015 0.462 ± 0.021 0.384 ± 0.019 0.329 ± 0.015 0.427 ± 0.010
0.10 0.250 ± 0.010 0.333 ± 0.034 0.412 ± 0.047 0.417 ± 0.057 0.398 ± 0.072 0.308 ± 0.011 0.287 ± 0.015 0.399 ± 0.009

Electricity 0.20 0.225 ± 0.008 0.244 ± 0.013 0.342 ± 0.014 0.320 ± 0.017 0.341 ± 0.068 0.261 ± 0.008 0.245 ± 0.011 0.391 ± 0.010
0.30 0.212 ± 0.007 0.240 ± 0.014 0.335 ± 0.015 0.300 ± 0.022 0.277 ± 0.059 0.236 ± 0.008 0.221 ± 0.008 0.384 ± 0.009
0.50 0.194 ± 0.007 0.227 ± 0.012 0.340 ± 0.022 0.297 ± 0.016 0.168 ± 0.003 0.209 ± 0.008 0.193 ± 0.008 0.386 ± 0.009

0.05 0.095 ± 0.015 0.190 ± 0.020 0.241 ± 0.102 0.115 ± 0.015 0.374 ± 0.033 0.142 ± 0.016 0.165 ± 0.014 0.291 ± 0.009
0.10 0.083 ± 0.015 0.159 ± 0.013 0.251 ± 0.081 0.114 ± 0.014 0.375 ± 0.038 0.124 ± 0.018 0.132 ± 0.015 0.276 ± 0.010

Solar 0.20 0.072 ± 0.015 0.149 ± 0.020 0.314 ± 0.035 0.109 ± 0.016 0.217 ± 0.023 0.108 ± 0.014 0.109 ± 0.012 0.270 ± 0.010
0.30 0.061 ± 0.012 0.135 ± 0.014 0.338 ± 0.05 0.108 ± 0.016 0.156 ± 0.002 0.100 ± 0.015 0.098 ± 0.012 0.266 ± 0.010
0.50 0.054 ± 0.013 0.098 ± 0.013 0.315 ± 0.080 0.107 ± 0.015 0.079 ± 0.011 0.094 ± 0.013 0.088 ± 0.013 0.262 ± 0.009

0.05 0.283 ± 0.016 0.246 ± 0.010 0.406 ± 0.074 0.318 ± 0.014 0.337 ± 0.045 0.293 ± 0.007 0.261 ± 0.010 0.363 ± 0.007
0.10 0.211 ± 0.012 0.214 ± 0.007 0.319 ± 0.025 0.288 ± 0.018 0.288 ± 0.017 0.237 ± 0.006 0.245 ± 0.009 0.362 ± 0.006

Traffic 0.20 0.168 ± 0.006 0.216 ± 0.006 0.270 ± 0.012 0.271 ± 0.011 0.269 ± 0.017 0.197 ± 0.005 0.224 ± 0.008 0.361 ± 0.006
0.30 0.151 ± 0.007 0.172 ± 0.008 0.251 ± 0.006 0.259 ± 0.012 0.240 ± 0.037 0.180 ± 0.006 0.197 ± 0.007 0.355 ± 0.006
0.50 0.139 ± 0.007 0.171 ± 0.005 0.278 ± 0.040 0.240 ± 0.021 0.144 ± 0.022 0.160 ± 0.008 0.161 ± 0.060 0.354 ± 0.007

TimeFlow improvement / 24.14 % 50.53 % 31.61 % 36.12 % 20.33 % 18.90 % 53.40 %

Published in Transactions on Machine Learning Research (04/2024)

training procedure (see Appendix D.3). Lastly, the vanilla Neural Process baseline underperformed, so we
customized its architecture to conduct a fair comparison with TimeFlow. We used the INR and hypernet-
work from TimeFlow to align the Neural Process with our temporal frequency bias and shift modulation
technique.

Table 14: mTAN hyperparameter search.

Dimension size “ linear scheduler lr NumRefPoints k-iwae Target ratio
50 1 1 ◊ 10≠5 32 5 0.2
100 0.95 0.0001 64 10 0.8
- 0.5 0.001 128 - -
- 0.1 0.005 - - -

Table 15: TIDER hyperparameter search.

Dimension size ⁄ar ⁄trend lr Season number
50 0.1 0.01 0.0001 2
100 0.2 0.1 0.001 10
- - - 0.005 15
- - - - 20

Table 16: CSDI chosen hyperparameters.

Epochs lr Layers Channels Nheads Di�usion embedding dimension NSteps Schedule Time embedding Feature embedding
5000 0.001 4 64 8 128 100 Quad 128 16

D.1.2 Models complexity

We can see in Table 17 that our method has 10 times less parameters than BRITS and 20 times less than
SAITS. It is mainly due to their modelisation of interaction between samples. SAITS, which is based on
transformers has the highest number of parameters when mTAN has the lowest number of parameters.

Table 17: Number of parameters for each DL methods on the imputation task on the Electricity dataset.

TimeFlow DeepTime NeuralProcess mTAN SAITS BRITS TIDER
Number of parameters 602k 1315k 248k 113k 11 137k 6 220k 1 034k

D.2 Imputation for previously unseen time series

Setting In this section we analyze in details the imputations results for previously unseen time series
described in Section 4.1. Specifically, TimeFlow is trained on a given set of time series within a defined time
window and then used for inference on new time series. We train TimeFlow on 50 % of the samples and
consider the remaining 50 % as the new time series.

We compare in Table 18 observed grid fit scores and missing grid inference scores for time series known at
training and time series unknown at training.

Results The results presented in Table 18 indicate that the inference MAE for missing grids shows consis-
tency between known and new samples, regardless of the data or sampling rate. However, it is worth noting
that there is a slight drop in performance compared to the results in table Table 1. This decrease is because
in Table 18, the shared architecture is trained on only half the samples, a�ecting its overall performance.

22

Figure 1: Number of parameters for each DL methods on the imputation task on the
Electricity dataset.

10/22

Motivations TimeFlow architecture Experiments Conclusion References

Qualitative comparison with BRITS

0.00 0.02 0.04 0.06 0.08 0.10

0.0

2.5

Individual 35: TimeFlow MAE : 0.316 BRITS MAE : 0.488

0.00 0.02 0.04 0.06 0.08 0.102

0

2
Individual 25: TimeFlow MAE : 0.404 BRITS MAE : 0.737

Ground Truth TimeFlow imputation BRITS imputation Learned points

Figure 2: Electricity dataset. TimeFlow imputation (blue line) and BRITS imputation
(gray line) with 10% of known point (red points) on the eight first days of samples 35
(top) and 25 (bottom). 11/22

Motivations TimeFlow architecture Experiments Conclusion References

Forecasting

Training

Inference

12/22

Motivations TimeFlow architecture Experiments Conclusion References

Wide range of baselines on three datasets

Table 2: Mean MAE forecast results for adjacent time windows. H stands for the
horizon. Bold results are best, underline results are second best.

Continuous methods Discrete methods

H TimeFlow DeepTime Neural Process Patch-TST DLinear AutoFormer Informer

Electricity

96 0.218 ± 0.017 0.240 ± 0.027 0.392 ± 0.045 0.214 ± 0.020 0.236 ± 0.035 0.310 ± 0.031 0.293 ± 0.0184

192 0.238 ± 0.012 0.251 ± 0.023 0.401 ± 0.046 0.225 ± 0.017 0.248 ± 0.032 0.322 ± 0.046 0.336 ± 0.032

336 0.265 ± 0.036 0.290 ± 0.034 0.434 ± 0.075 0.242 ± 0.024 0.284 ± 0.043 0.330 ± 0.019 0.405 ± 0.044

720 0.318 ± 0.073 0.356 ± 0.060 0.605 ± 0.149 0.291 ± 0.040 0.370 ± 0.086 0.456 ± 0.052 0.489 ± 0.072

SolarH

96 0.172 ± 0.017 0.197 ± 0.002 0.221 ± 0.048 0.232 ± 0.008 0.204 ± 0.002 0.261 ± 0.053 0.273 ± 0.023

192 0.198 ± 0.010 0.202 ± 0.014 0.244 ± 0.048 0.231 ± 0.027 0.211 ± 0.012 0.312 ± 0.085 0.256 ± 0.026

336 0.207 ± 0.019 0.200 ± 0.012 0.241 ± 0.005 0.254 ± 0.048 0.212 ± 0.019 0.341 ± 0.107 0.287 ± 0.006

720 0.215 ± 0.016 0.240 ± 0.011 0.403 ± 0.147 0.271 ± 0.036 0.246 ± 0.015 0.368 ± 0.006 0.341 ± 0.049

Traffic

96 0.216 ± 0.033 0.229 ± 0.032 0.283 ± 0.028 0.201 ± 0.031 0.225 ± 0.034 0.299 ± 0.080 0.324 ± 0.113

192 0.208 ± 0.021 0.220 ± 0.020 0.292 ± 0.023 0.195 ± 0.024 0.215 ± 0.022 0.320 ± 0.036 0.321 ± 0.052

336 0.237 ± 0.040 0.247 ± 0.033 0.305 ± 0.039 0.220 ± 0.036 0.244 ± 0.035 0.450 ± 0.127 0.394 ± 0.066

720 0.266 ± 0.048 0.290 ± 0.045 0.339 ± 0.037 0.268 ± 0.050 0.290 ± 0.047 0.630 ± 0.043 0.441 ± 0.055

TimeFlow improvement / 6.56 % 30.79 % 2.64 % 7.30 % 35.43 % 33.07 %

13/22

Motivations TimeFlow architecture Experiments Conclusion References

Forecast on sparsely observed look-back window (1/2)

Table 3: MAE results for forecasting with missing values in the look-back window. τ
stands for the percentage of observed values in the look-back window. Best results are
in bold.

TimeFlow DeepTime Neural Process

H τ Imputation error Forecast error Imputation error Forecast error Imputation error Forecast error

Electricity

96
0.5 0.151 ± 0.003 0.239 ± 0.013 0.209 ± 0.004 0.270 ± 0.019 0.460 ± 0.048 0.486 ± 0.078
0.2 0.208 ± 0.006 0.260 ± 0.015 0.249 ± 0.006 0.296 ± 0.023 0.644 ± 0.079 0.650 ± 0.095
0.1 0.272 ± 0.006 0.295 ± 0.016 0.284 ± 0.007 0.324 ± 0.026 0.740 ± 0.083 0.737 ± 0.106

192
0.5 0.149 ± 0.004 0.235 ± 0.011 0.204 ± 0.004 0.265 ± 0.018 0.461 ± 0.045 0.498 ± 0.070
0.2 0.209 ± 0.006 0.257 ± 0.013 0.244 ± 0.007 0.290 ± 0.023 0.601 ± 0.075 0.626 ± 0.101
0.1 0.274 ± 0.010 0.289 ± 0.016 0.282 ± 0.007 0.315 ± 0.025 0.461 ± 0.045 0.724 ± 0.090

Traffic

96
0.5 0.180 ± 0.016 0.219 ± 0.026 0.272 ± 0.028 0.243 ± 0.030 0.436 ± 0.025 0.444 ± 0.047
0.2 0.239 ± 0.019 0.243 ± 0.027 0.335 ± 0.026 0.293 ± 0.027 0.596 ± 0.049 0.597 ± 0.075
0.1 0.312 ± 0.020 0.290 ± 0.027 0.385 ± 0.025 0.344 ± 0.027 0.734 ± 0.102 0.731 ± 0.132

192
0.5 0.176 ± 0.014 0.217 ± 0.017 0.241 ± 0.027 0.234 ± 0.021 0.477 ± 0.042 0.476 ± 0.043
0.2 0.233 ± 0.017 0.236 ± 0.021 0.286 ± 0.027 0.276 ± 0.020 0.685 ± 0.109 0.678 ± 0.108
0.1 0.304 ± 0.019 0.277 ± 0.021 0.331 ± 0.025 0.324 ± 0.021 0.888 ± 0.178 0.877 ± 0.174

TimeFlow improvement / / 18.97 % 11.87 % 61.88 % 58.41 %

14/22

Motivations TimeFlow architecture Experiments Conclusion References

Forecast on sparsely observed look-back window (2/2)

0.0 0.2 0.4 0.6 0.8 1.0

1

0

1

2

3

4

5

6

Ground truth Imputation Forecast points Observed points

Figure 3: Traffic dataset, sample 95. In this figure, TimeFlow simultaneously imputes
and forecasts at horizon 96 with a 10% partially observed look-back window of length
512.

15/22

Motivations TimeFlow architecture Experiments Conclusion References

Known vs New Samples

TimeFlow vs PatchTST

⇒ Very close performances: Known ≈ New / TimeFlow ≈ PatchTST

Published in Transactions on Machine Learning Research (04/2024)

Results. The results in Table 2 show that our approach ranks in the top two across all datasets and
horizons and is the overall best continuous method. TimeFlow’s performance is comparable to the current
SOTA model PatchTST, with only 2% relative di�erence. Moreover, TimeFlow shows consistent results
across the three datasets, whereas the other best discrete and continuous baselines, i.e. PatchTST and
DeepTime, performance drops for some datasets. We also note that, despite the great performance of the
SOTA PatchTST, other transformer-based baselines (discrete methods in Table 2) perform poorly. We
provide a detailed insight on these results in Appendix E.1. Overall, although this evaluation setting favors
discrete methods because the time series are observed at evenly distributed time steps, TimeFlow consistently
performs as well as PatchTST and outperforms all the other methods, whether discrete or continuous. It
is the first time that a continuous model has achieved the same level of performance as discrete methods
within their specific setting.

4.2.2 Forecasting on previously unseen time series.

This section discusses how TimeFlow adapts to unseen time series, which is critical in forecasting. Indeed, in
many real-world applications, forecasters are trained on a limited subset of available samples and applied to
a wider range of samples during inference. Informer, AutoFormer, or DLinear original architectures directly
model the relationships between time series (channel-dependence), limiting their adaptability to new samples.
In contrast, TimeFlow takes a di�erent approach by considering the observed series at di�erent locations as
distinct samples, similar to PatchTST, Neural Process, and DeepTime. This independence allows TimeFlow
to e�ectively generalize to previously unseen time series of the same phenomenon.

Setting. In this setting, we propose to evaluate how TimeFlow performs on previously unseen time series.
We compare it to the best forecaster, PatchTST. We train TimeFlow and PatchTST on 50 % of the samples
and consider the remaining 50 % as the new time series. The training procedure is the same as described in
Figure 4. In Figure 5, we present the results of TimeFlow and PatchTST for both known and new samples
(for periods outside the training window).

Results. The results in Figure 5 highlight two key observations. First, both approaches show robust
adaptability to new samples, as evidenced by the minimal di�erence in mean absolute error between known
and new samples at inference. Second, TimeFlow and PatchTST exhibit comparable performance in this
context, with negligible di�erences across horizons and datasets.

Figure 5: Mean MAE forecasting task results over di�erent horizons in the context of generalization to new
time series. Comparison of TimeFlow and PatchTST performances on the Electricity, Tra�c and SolarH
datasets.

10

16/22

Motivations TimeFlow architecture Experiments Conclusion References

Quantify uncertainty with TimeFlow (L is the pinball loss)

0.2 0.3 0.4 0.5 0.6 0.7 0.8

3

2

1

0

1

2

0.2 0.3 0.4 0.5 0.6 0.7 0.8
3

2

1

0

1

2

3

0.2 0.3 0.4 0.5 0.6 0.7 0.8

1

0

1

2

3

0.2 0.3 0.4 0.5 0.6 0.7 0.8
2

1

0

1

2

0.2 0.3 0.4 0.5 0.6 0.7 0.8

1

0

1

2

3

0.2 0.3 0.4 0.5 0.6 0.7 0.8

1

0

1

2

3

Ground Truth q25-q75 q5-q95

Figure 4: Quantifying uncertainty in block imputation of two missing days in the
Electricity dataset.

17/22

Conclusion

Motivations TimeFlow architecture Experiments Conclusion References

Key takeaways

TimeFlow offers:

Unified + continuous approach for time series imputation & forecasting.

Adaptability to new contexts through meta-learning optimization.

Very high performances in all situations

Wide range of experiments to measure the benefits of all components

Limitation:

Inference computation time (10-100 slower that competitors)

Perspectives:

Moving to mutlivariate time-series

18/22

Motivations TimeFlow architecture Experiments Conclusion References

A team work

Click on this link

19/22

https://arxiv.org/abs/2306.05880

Motivations TimeFlow architecture Experiments Conclusion References

References I

E. Dupont, H. Kim, S. A. Eslami, D. J. Rezende, and D. Rosenbaum. From data
to functa: Your data point is a function and you can treat it like one. In
International Conference on Machine Learning, pages 5694–5725. PMLR, 2022.

H. Kim, A. Mnih, J. Schwarz, M. Garnelo, A. Eslami, D. Rosenbaum, O. Vinyals,
and Y. W. Teh. Attentive neural processes. arXiv preprint arXiv:1901.05761,
2019.

S. Klocek, L. Maziarka, M. Wo lczyk, J. Tabor, J. Nowak, and M. Śmieja.
Hypernetwork functional image representation. In Artificial Neural Networks
and Machine Learning–ICANN 2019: Workshop and Special Sessions: 28th
International Conference on Artificial Neural Networks, Munich, Germany,
September 17–19, 2019, Proceedings 28, pages 496–510. Springer, 2019.

B. Mildenhall, P. P. Srinivasan, M. Tancik, J. T. Barron, R. Ramamoorthi, and
R. Ng. Nerf: Representing scenes as neural radiance fields for view synthesis.
Communications of the ACM, 65(1):99–106, 2021.

20/22

Motivations TimeFlow architecture Experiments Conclusion References

References II

S. N. Shukla and B. M. Marlin. Multi-time attention networks for irregularly
sampled time series. arXiv preprint arXiv:2101.10318, 2021.

V. Sitzmann, J. Martel, A. Bergman, D. Lindell, and G. Wetzstein. Implicit
neural representations with periodic activation functions. Advances in Neural
Information Processing Systems, 33:7462–7473, 2020.

C. K. Williams and C. E. Rasmussen. Gaussian processes for machine learning,
volume 2. MIT press Cambridge, MA, 2006.

G. Woo, C. Liu, D. Sahoo, A. Kumar, and S. C. H. Hoi. Deeptime: Deep
time-index meta-learning for non-stationary time-series forecasting. CoRR,
abs/2207.06046, 2022.

Y. Yin, M. Kirchmeyer, J.-Y. Franceschi, A. Rakotomamonjy, and P. Gallinari.
Continuous pde dynamics forecasting with implicit neural representations.
arXiv preprint arXiv:2209.14855, 2022.

21/22

Motivations TimeFlow architecture Experiments Conclusion References

References III

L. Zintgraf, K. Shiarli, V. Kurin, K. Hofmann, and S. Whiteson. Fast context
adaptation via meta-learning. In International Conference on Machine
Learning, pages 7693–7702. PMLR, 2019.

22/22

	Motivations
	

	TimeFlow architecture
	

	Experiments
	

	Conclusion
	

	References

