

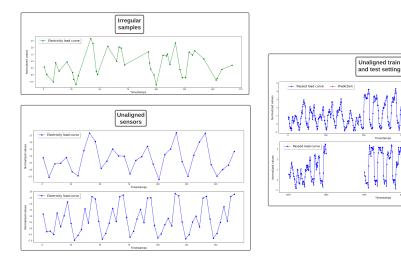
TIME SERIES CONTINUOUS MODELING FOR IMPUTATION AND FORECASTING WITH IMPLICIT NEURAL REPRESENTATIONS

July, 2nd 2024, CAp

EKINOC

Etienne Le Naour, Louis Serrano, Léon Migus, Yuan Yin, Ghislain Agoua, Nicolas Baskiotis, Patrick Gallinari, Vincent Guigue

- Modeling Time Series as a continuous function
- $\Rightarrow\,$ Deal with irregular sampling / unaligned sensors
- \Rightarrow Unified framework for Data imputation + Forecasting

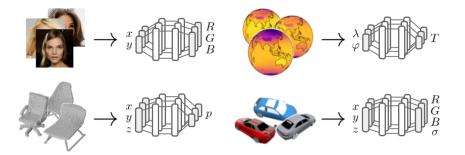


Motivations 0 • 0	TimeFlow architecture	Experiments	Conclusion	References
Technical option	าร			

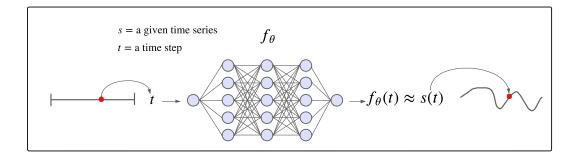
- Gaussian Processes
- Neural Processes
- Specific Architecture
- Implicit Neural Representation (INR)

[Williams and Rasmussen, 2006]

- [Kim et al., 2019]
- (e.g. mTAN) [Shukla and Marlin, 2021]
 - [Dupont et al., 2022]

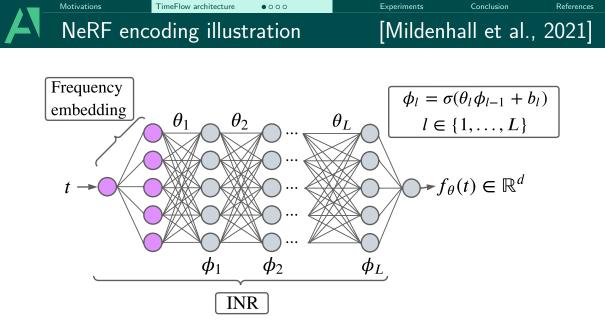


- A first attempt:
- Room for improvement:
 - Not designed for data imputation (forecasting only)
 - \blacksquare \approx Ridge Regression on sampled Fourier descriptors



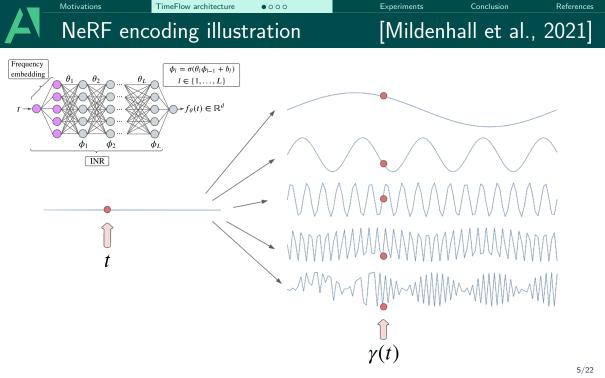
DeepTime [Woo et al., 2022]

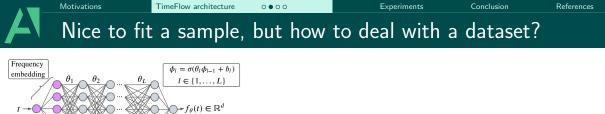
TIMEFLOW ARCHITECTURE

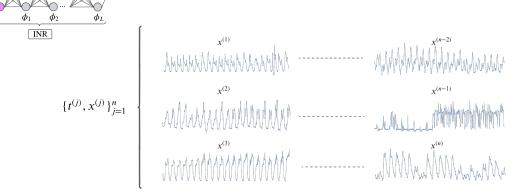




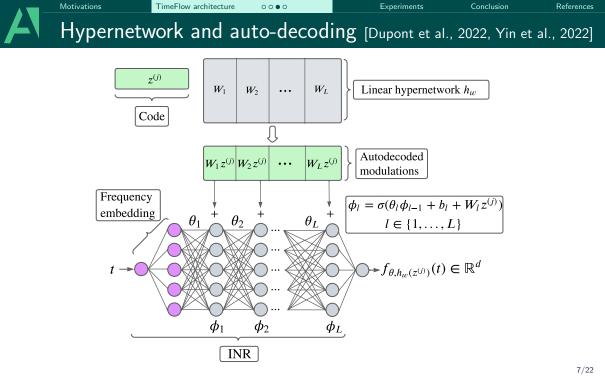
1 NeRF encoding : $t \to \gamma(t)$, N frequency bands $\gamma(t) := (\sin(\pi t), \cos(\pi t), \cdots, \sin(2^N \pi t), \cos(2^N \pi t))$ 2 Then $\gamma(t) \to MLP(\gamma(t); \theta)$ Activation functions are ReLU (i.e. ReLU(x) = max(0, x))

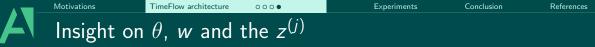


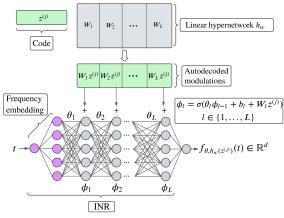




■ Solution → Hypernetwork that modulate the INR [Dupont et al., 2022, Klocek et al., 2019, Sitzmann et al., 2020]







- $\gamma(t)(=\phi_0)\in\mathbb{R}^{64}$, $z^{(j)}\in\mathbb{R}^{128}$
- $\bullet \ \phi_{\ell > 0} \in \mathbb{R}^{256}$
- MLP: 5 layer

- $z^{(j)}$: instance coding
- θ and w = shared information across all samples
- MSE Loss
- Training: [Zintgraf et al., 2019] inner+outer loops
- i) Sample adaptation = freeze $(\theta, w) + 3$ grad. steps on $z^{(j)}$ [Second order grad. (Hessien comput.)]
- o) (θ, w) optimization
- Inference: i) + forward not so fast...

EXPERIMENTS

A 💶	Motivations	TimeFlow architecture	Experiments	• • • • • • • • • • • • • • • • • • • •	Conclusion	References
	Imputatio	on				

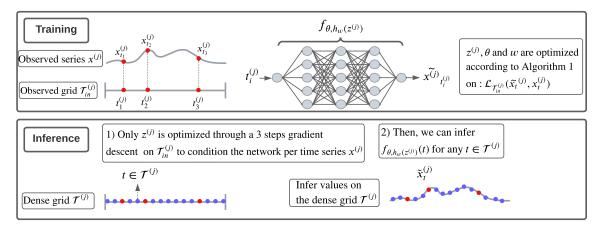


Table 1: Mean MAE imputation results on the missing grid only. τ stands for the subsampling rate. Bold results are best, underlined results are second best.

			Continuous	methods			Discrete ı	methods	
	τ	TimeFlow	DeepTime	mTAN	Neural Process	CSDI	SAITS	BRITS	TIDER
	0.05	$\textbf{0.324} \pm \textbf{0.013}$	0.379 ± 0.037	0.575 ± 0.039	0.357 ± 0.015	0.462 ± 0.021	0.384 ± 0.019	$\underline{0.329\pm0.015}$	0.427 ± 0.010
	0.10	$\textbf{0.250}\pm\textbf{0.010}$	0.333 ± 0.034	0.412 ± 0.047	0.417 ± 0.057	0.398 ± 0.072	0.308 ± 0.011	$\underline{0.287\pm0.015}$	0.399 ± 0.009
Electricity	0.20	$\textbf{0.225}\pm\textbf{0.008}$	$\underline{0.244 \pm 0.013}$	0.342 ± 0.014	0.320 ± 0.017	0.341 ± 0.068	0.261 ± 0.008	0.245 ± 0.011	0.391 ± 0.010
	0.30	$\textbf{0.212}\pm\textbf{0.007}$	0.240 ± 0.014	0.335 ± 0.015	0.300 ± 0.022	0.277 ± 0.059	0.236 ± 0.008	$\underline{0.221\pm0.008}$	0.384 ± 0.009
	0.50	0.194 ± 0.007	0.227 ± 0.012	0.340 ± 0.022	0.297 ± 0.016	$\textbf{0.168} \pm \textbf{0.003}$	0.209 ± 0.008	$\underline{0.193\pm0.008}$	0.386 ± 0.009
	0.05	$\textbf{0.095}\pm\textbf{0.015}$	0.190 ± 0.020	0.241 ± 0.102	$\underline{0.115\pm0.015}$	0.374 ± 0.033	0.142 ± 0.016	0.165 ± 0.014	0.291 ± 0.009
	0.10	$\textbf{0.083}\pm\textbf{0.015}$	0.159 ± 0.013	0.251 ± 0.081	$\underline{0.114\pm0.014}$	0.375 ± 0.038	0.124 ± 0.018	0.132 ± 0.015	0.276 ± 0.010
Solar	0.20	$\textbf{0.072}\pm\textbf{0.015}$	0.149 ± 0.020	0.314 ± 0.035	0.109 ± 0.016	0.217 ± 0.023	$\underline{0.108\pm0.014}$	0.109 ± 0.012	0.270 ± 0.010
	0.30	$\textbf{0.061} \pm \textbf{0.012}$	0.135 ± 0.014	0.338 ± 0.05	0.108 ± 0.016	0.156 ± 0.002	0.100 ± 0.015	$\underline{0.098\pm0.012}$	0.266 ± 0.010
	0.50	$\textbf{0.054}\pm\textbf{0.013}$	0.098 ± 0.013	0.315 ± 0.080	0.107 ± 0.015	$\underline{0.079\pm0.011}$	0.094 ± 0.013	0.088 ± 0.013	0.262 ± 0.009
	0.05	0.283 ± 0.016	$\textbf{0.246} \pm \textbf{0.010}$	0.406 ± 0.074	0.318 ± 0.014	0.337 ± 0.045	0.293 ± 0.007	0.261 ± 0.010	0.363 ± 0.007
	0.10	$\textbf{0.211}\pm\textbf{0.012}$	$\underline{0.214\pm0.007}$	0.319 ± 0.025	0.288 ± 0.018	0.288 ± 0.017	0.237 ± 0.006	0.245 ± 0.009	0.362 ± 0.006
Traffic	0.20	$\textbf{0.168}\pm\textbf{0.006}$	0.216 ± 0.006	0.270 ± 0.012	0.271 ± 0.011	0.269 ± 0.017	$\underline{0.197\pm0.005}$	0.224 ± 0.008	0.361 ± 0.006
	0.30	$\textbf{0.151} \pm \textbf{0.007}$	$\underline{0.172\pm0.008}$	0.251 ± 0.006	0.259 ± 0.012	0.240 ± 0.037	0.180 ± 0.006	0.197 ± 0.007	0.355 ± 0.006
	0.50	$\textbf{0.139}\pm\textbf{0.007}$	0.171 ± 0.005	0.278 ± 0.040	0.240 ± 0.021	$\underline{0.144\pm0.022}$	0.160 ± 0.008	0.161 ± 0.060	0.354 ± 0.007
TimeFlow improvement		/	24.14 %	50.53 %	31.61 %	36.12 %	20.33 %	18.90 %	53.40 %

MotivationsTimeFlow architectureExperiments0<000000</th>ConclusionReferencesWe compare to a wide range of baselines on three datasets

Table 1: Mean MAE imputation results on the missing grid only. τ stands for the subsampling rate. Bold results are best, underlined results are second best.

			Continuous	methods		Discrete methods			
	τ	TimeFlow	DeepTime	mTAN	Neural Process	CSDI	SAITS	BRITS	TIDER
	0.05	0.324 ± 0.013	0.379 ± 0.037	0.575 ± 0.039	0.357 ± 0.015	0.462 ± 0.021	0.384 ± 0.019	$\underline{0.329\pm0.015}$	0.427 ± 0.010
Electricity	0.10		0.333 ± 0.034	0.412 ± 0.047	0.417 ± 0.057	0.398 ± 0.072			0.399 ± 0.009
	0.20	0.225 ± 0.008	0.244 ± 0.013	0.342 ± 0.014	0.320 ± 0.017	0.341 ± 0.068	0.261 ± 0.008	0.245 ± 0.011	0.391 ± 0.010
	0.30	0.212 ± 0.007	0.240 ± 0.014	0.335 ± 0.015	0.300 ± 0.022	0.277 ± 0.059	0.236 ± 0.008	0.221 ± 0.008	0.384 ± 0.009
	0.50	0.194 ± 0.007	0.227 ± 0.012	0.340 ± 0.022	0.297 ± 0.016	0.168 ± 0.003	0.209 ± 0.008	$\underline{0.193\pm0.008}$	0.386 ± 0.009
	0.05	0.095 ± 0.015	0.190 ± 0.020	0.241 ± 0.102	$\underline{0.115\pm0.015}$	0.374 ± 0.033	0.142 ± 0.016	0.165 ± 0.014	0.291 ± 0.009
	0.10	0.083 ± 0.015	0.159 ± 0.013	0.251 ± 0.081	0.114 ± 0.014	0.375 ± 0.038	0.124 ± 0.018	0.132 ± 0.015	0.276 ± 0.010
Solar	0.20	0.072 ± 0.015	0.149 ± 0.020	0.314 ± 0.035	0.109 ± 0.016	0.217 ± 0.023	0.108 ± 0.014	0.109 ± 0.012	0.270 ± 0.010
	0.30	0.061 ± 0.012	0.135 ± 0.014	0.338 ± 0.05	0.108 ± 0.016	0.156 ± 0.002	0.100 ± 0.015	0.098 ± 0.012	0.266 ± 0.010
	0.50	0.054 ± 0.013	0.098 ± 0.013	0.315 ± 0.080	0.107 ± 0.015	$\underline{0.079 \pm 0.011}$	0.094 ± 0.013	0.088 ± 0.013	0.262 ± 0.009
	0.05	0.283 ± 0.016	0.246 ± 0.010	0.406 ± 0.074	0.318 ± 0.014	0.337 ± 0.045	0.293 ± 0.007	$\underline{0.261}\pm 0.010$	0.363 ± 0.007
	0.10		0.214 ± 0.007	0.319 ± 0.025	0.288 ± 0.018	0.288 ± 0.017	0.237 ± 0.006	0.245 ± 0.009	0.362 ± 0.006
Traffic	0.20	$\textbf{0.168} \pm \textbf{0.006}$	0.216 ± 0.006	0.270 ± 0.012	0.271 ± 0.011	0.269 ± 0.017	0.197 ± 0.005	0.224 ± 0.008	0.361 ± 0.006
	0.30	0.151 ± 0.007	0.172 ± 0.008	0.251 ± 0.006	0.259 ± 0.012	0.240 ± 0.037	0.180 ± 0.006	0.197 ± 0.007	0.355 ± 0.006
	0.50	$\textbf{0.139}\pm\textbf{0.007}$	0.171 ± 0.005	0.278 ± 0.040	0.240 ± 0.021	$\underline{0.144 \pm 0.022}$	0.160 ± 0.008	0.161 ± 0.060	0.354 ± 0.007
TimeFlow improvement		/	24.14 %	50.53 %	31.61 %	36.12 %	20.33 %	18.90 %	53.40 %

1	.'imeF'low	DeepTime	NeuralProcess	mTAN	SAITS	BRITS	TIDER
Number of parameters	602k	1315k	248k	113k	$11 \ 137 k$	$6~220 \rm k$	$1\ 034 \mathrm{k}$

Figure 1: Number of parameters for each DL methods on the imputation task on the Electricity dataset.

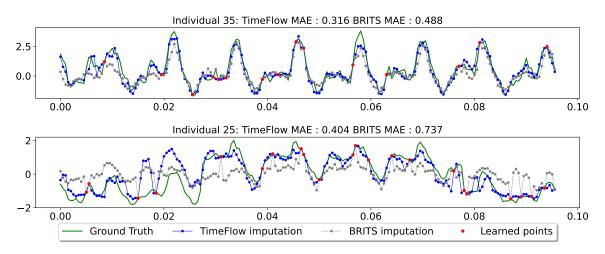
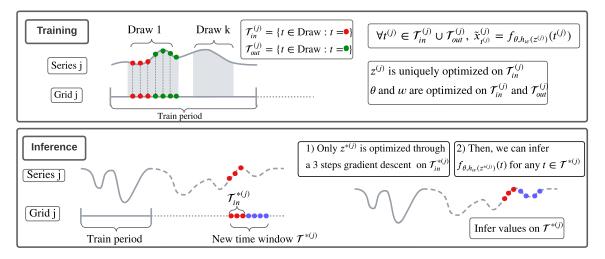


Figure 2: *Electricity dataset*. TimeFlow imputation (blue line) and BRITS imputation (gray line) with 10% of known point (red points) on the eight first days of samples 35 (top) and 25 (bottom).

Motivations	TimeFlow architecture	Experiments	00000000	Conclusion	References
Forecasti	ng				



Motivations TimeFlow architecture Experiments 0000000 Conclusion References Wide range of baselines on three datasets

Table 2: Mean MAE forecast results for adjacent time windows. H stands for the horizon. Bold results are best, underline results are second best.

		C	ontinuous method	S		Discrete	methods	
	Н	TimeFlow	DeepTime	Neural Process	Patch-TST	DLinear	AutoFormer	Informer
	96	0.218 ± 0.017	0.240 ± 0.027	0.392 ± 0.045	$\textbf{0.214} \pm \textbf{0.020}$	0.236 ± 0.035	0.310 ± 0.031	0.293 ± 0.0184
Electricity (192	$\underline{0.238\pm0.012}$	0.251 ± 0.023	0.401 ± 0.046	$\textbf{0.225}\pm\textbf{0.017}$	0.248 ± 0.032	0.322 ± 0.046	0.336 ± 0.032
Electricity	336	$\underline{0.265\pm0.036}$	0.290 ± 0.034	0.434 ± 0.075	$\textbf{0.242}\pm\textbf{0.024}$	0.284 ± 0.043	0.330 ± 0.019	0.405 ± 0.044
	720	$\underline{0.318\pm0.073}$	0.356 ± 0.060	0.605 ± 0.149	$\textbf{0.291}\pm\textbf{0.040}$	0.370 ± 0.086	0.456 ± 0.052	0.489 ± 0.072
	96	$\textbf{0.172}\pm\textbf{0.017}$	$\underline{0.197 \pm 0.002}$	0.221 ± 0.048	0.232 ± 0.008	0.204 ± 0.002	0.261 ± 0.053	0.273 ± 0.023
SolarH	192	$\textbf{0.198}\pm\textbf{0.010}$	$\underline{0.202\pm0.014}$	0.244 ± 0.048	0.231 ± 0.027	0.211 ± 0.012	0.312 ± 0.085	0.256 ± 0.026
Solarn	336	$\underline{0.207\pm0.019}$	$\textbf{0.200}\pm\textbf{0.012}$	0.241 ± 0.005	0.254 ± 0.048	0.212 ± 0.019	0.341 ± 0.107	0.287 ± 0.006
	720	$\textbf{0.215}~\pm~\textbf{0.016}$	$\underline{0.240\pm0.011}$	0.403 ± 0.147	0.271 ± 0.036	0.246 ± 0.015	0.368 ± 0.006	0.341 ± 0.049
	96	$\underline{0.216 \pm 0.033}$	0.229 ± 0.032	0.283 ± 0.028	$\textbf{0.201} \pm \textbf{0.031}$	0.225 ± 0.034	0.299 ± 0.080	0.324 ± 0.113
T	192	$\underline{0.208\pm0.021}$	0.220 ± 0.020	0.292 ± 0.023	$\textbf{0.195}\pm\textbf{0.024}$	0.215 ± 0.022	0.320 ± 0.036	0.321 ± 0.052
Traffic	336	$\underline{0.237\pm0.040}$	0.247 ± 0.033	0.305 ± 0.039	$\textbf{0.220} \pm \textbf{0.036}$	0.244 ± 0.035	0.450 ± 0.127	0.394 ± 0.066
	720	$\textbf{0.266} \pm \textbf{0.048}$	0.290 ± 0.045	0.339 ± 0.037	$\underline{0.268\pm0.050}$	0.290 ± 0.047	0.630 ± 0.043	0.441 ± 0.055
TimeFlow improvement		/	6.56 %	30.79 %	2.64 %	7.30 %	35.43 %	33.07 %

Table 3: MAE results for forecasting with missing values in the look-back window. τ stands for the percentage of observed values in the look-back window. Best results are in bold.

			Time	Flow	Deep	Гime	Neural F	rocess
	Н	τ	Imputation error	Forecast error	Imputation error	Forecast error	Imputation error	Forecast erro
Electricity	96	0.5 0.2 0.1	$\begin{array}{c} 0.151 \pm 0.003 \\ 0.208 \pm 0.006 \\ 0.272 \pm 0.006 \end{array}$	$\begin{array}{c} 0.239 \pm 0.013 \\ 0.260 \pm 0.015 \\ 0.295 \pm 0.016 \end{array}$	$\begin{array}{c} 0.209 \pm 0.004 \\ 0.249 \pm 0.006 \\ 0.284 \pm 0.007 \end{array}$	$\begin{array}{c} 0.270 \pm 0.019 \\ 0.296 \pm 0.023 \\ 0.324 \pm 0.026 \end{array}$	$\begin{array}{c} 0.460 \pm 0.048 \\ 0.644 \pm 0.079 \\ 0.740 \pm 0.083 \end{array}$	$\begin{array}{c} 0.486 \pm 0.073 \\ 0.650 \pm 0.093 \\ 0.737 \pm 0.106 \end{array}$
Lieuticity	192	0.5 0.2 0.1	$\begin{array}{c} 0.149 \pm 0.004 \\ 0.209 \pm 0.006 \\ 0.274 \pm 0.010 \end{array}$	$\begin{array}{c} 0.235 \pm 0.011 \\ 0.257 \pm 0.013 \\ 0.289 \pm 0.016 \end{array}$	$\begin{array}{c} 0.204 \pm 0.004 \\ 0.244 \pm 0.007 \\ 0.282 \pm 0.007 \end{array}$	$\begin{array}{c} 0.265 \pm 0.018 \\ 0.290 \pm 0.023 \\ 0.315 \pm 0.025 \end{array}$	$\begin{array}{c} 0.461 \pm 0.045 \\ 0.601 \pm 0.075 \\ 0.461 \pm 0.045 \end{array}$	$\begin{array}{c} 0.498 \pm 0.070 \\ 0.626 \pm 0.107 \\ 0.724 \pm 0.090 \end{array}$
Traffic	96	0.5 0.2 0.1	$\begin{array}{c} 0.180\pm0.016\\ 0.239\pm0.019\\ 0.312\pm0.020 \end{array}$	$\begin{array}{c} 0.219 \pm 0.026 \\ 0.243 \pm 0.027 \\ 0.290 \pm 0.027 \end{array}$	$\begin{array}{c} 0.272 \pm 0.028 \\ 0.335 \pm 0.026 \\ 0.385 \pm 0.025 \end{array}$	$\begin{array}{c} 0.243 \pm 0.030 \\ 0.293 \pm 0.027 \\ 0.344 \pm 0.027 \end{array}$	$\begin{array}{c} 0.436 \pm 0.025 \\ 0.596 \pm 0.049 \\ 0.734 \pm 0.102 \end{array}$	$\begin{array}{c} 0.444 \pm 0.04 \\ 0.597 \pm 0.07 \\ 0.731 \pm 0.13 \end{array}$
Tranic	192	0.5 0.2 0.1	$\begin{array}{c} 0.176 \pm 0.014 \\ 0.233 \pm 0.017 \\ 0.304 \pm 0.019 \end{array}$	$\begin{array}{c} 0.217 \pm 0.017 \\ 0.236 \pm 0.021 \\ 0.277 \pm 0.021 \end{array}$	$\begin{array}{c} 0.241 \pm 0.027 \\ 0.286 \pm 0.027 \\ 0.331 \pm 0.025 \end{array}$	$\begin{array}{c} 0.234 \pm 0.021 \\ 0.276 \pm 0.020 \\ 0.324 \pm 0.021 \end{array}$	$\begin{array}{c} 0.477 \pm 0.042 \\ 0.685 \pm 0.109 \\ 0.888 \pm 0.178 \end{array}$	$\begin{array}{c} 0.476 \pm 0.04 \\ 0.678 \pm 0.10 \\ 0.877 \pm 0.17 \end{array}$
TimeFlow improvement			/	/	18.97 %	11.87 %	61.88 %	58.41 %



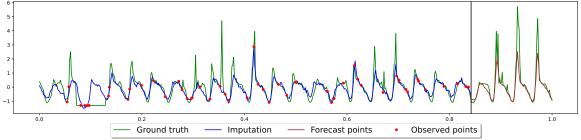
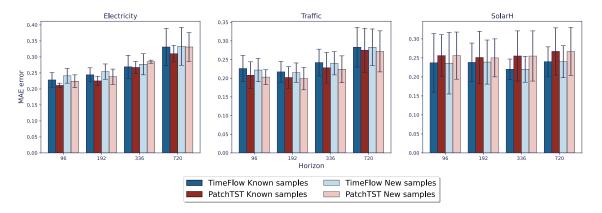


Figure 3: *Traffic dataset, sample 95.* In this figure, TimeFlow simultaneously imputes and forecasts at horizon 96 with a 10% partially observed look-back window of length 512.

Motivations	TimeFlow architecture	Experiments	000000000	Conclusion	References
Known	<i>vs</i> New Samples				

■ TimeFlow *vs* PatchTST

 \Rightarrow Very close performances: Known \approx New / TimeFlow \approx PatchTST



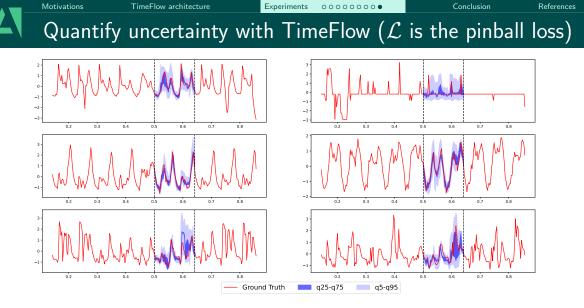


Figure 4: Quantifying uncertainty in block imputation of two missing days in the *Electricity* dataset.

CONCLUSION

Motivations	TimeFlow architecture	Experiments	Conclusion	• 0	References
Key take	aways				

TimeFlow offers:

- Unified + continuous approach for time series imputation & forecasting.
- Adaptability to new contexts through meta-learning optimization.
- Very high performances in all situations
- Wide range of experiments to measure the benefits of all components

Limitation:

■ Inference computation time (10-100 slower that competitors)

Perspectives:

Moving to mutlivariate time-series

Motivations	TimeFlow architecture	Experiments	Conclusion 0 •	References
A team v	work			

Time Series Continuous Modeling for Imputation and Forecasting with Implicit Neural Representations

Etienne Le Naour^{* 1,2}, Louis Serrano^{* 1}, Léon Migus^{* 1,3}, Yuan Yin¹, Ghislain Agoua² Nicolas Baskiotis¹, Patrick Gallinart^{1,4}, Vincent Guigue⁵ ¹ Sorbonne Université, CNRS, ISIR, 75005 Paris, France ² EDF R&D, Palaiseau, France ³ Sorbonne Université, CNRS, Laboratoire Jacques-Louis Lions, 75005 Paris, France ⁴ Criteo AI Lab, Paris, France ⁵ AgroParis Tech, Palaiseau, France {louis.serrano, leon.migus, yuan.yin, nicolas.baskiotis, vincent.guigue}@sorbonne-universite.fr {etienne.le-naour, ghislain.agoua}@edf.fr

Click on this link

A 💶	Motivations	TimeFlow architecture	Experiments	Conclusion	References
	Reference	es l			

- E. Dupont, H. Kim, S. A. Eslami, D. J. Rezende, and D. Rosenbaum. From data to functa: Your data point is a function and you can treat it like one. In International Conference on Machine Learning, pages 5694–5725. PMLR, 2022.
- H. Kim, A. Mnih, J. Schwarz, M. Garnelo, A. Eslami, D. Rosenbaum, O. Vinyals, and Y. W. Teh. Attentive neural processes. <u>arXiv preprint arXiv:1901.05761</u>, 2019.
- S. Klocek, Ł. Maziarka, M. Wołczyk, J. Tabor, J. Nowak, and M. Śmieja. Hypernetwork functional image representation. In <u>Artificial Neural Networks</u> and Machine Learning–ICANN 2019: Workshop and Special Sessions: 28th International Conference on Artificial Neural Networks, Munich, Germany, September 17–19, 2019, Proceedings 28, pages 496–510. Springer, 2019.
- B. Mildenhall, P. P. Srinivasan, M. Tancik, J. T. Barron, R. Ramamoorthi, and R. Ng. Nerf: Representing scenes as neural radiance fields for view synthesis. Communications of the ACM, 65(1):99–106, 2021.

A 💶	Motivations	TimeFlow architecture	Experiments	Conclusion	References
	Reference	es II			

- S. N. Shukla and B. M. Marlin. Multi-time attention networks for irregularly sampled time series. arXiv preprint arXiv:2101.10318, 2021.
- V. Sitzmann, J. Martel, A. Bergman, D. Lindell, and G. Wetzstein. Implicit neural representations with periodic activation functions. <u>Advances in Neural</u> Information Processing Systems, 33:7462–7473, 2020.
- C. K. Williams and C. E. Rasmussen. <u>Gaussian processes for machine learning</u>, volume 2. MIT press Cambridge, MA, 2006.
- G. Woo, C. Liu, D. Sahoo, A. Kumar, and S. C. H. Hoi. Deeptime: Deep time-index meta-learning for non-stationary time-series forecasting. <u>CoRR</u>, abs/2207.06046, 2022.
- Y. Yin, M. Kirchmeyer, J.-Y. Franceschi, A. Rakotomamonjy, and P. Gallinari. Continuous pde dynamics forecasting with implicit neural representations. arXiv preprint arXiv:2209.14855, 2022.

L. Zintgraf, K. Shiarli, V. Kurin, K. Hofmann, and S. Whiteson. Fast context adaptation via meta-learning. In <u>International Conference on Machine</u> <u>Learning</u>, pages 7693–7702. PMLR, 2019.