
Latent Trajectory Modeling: A Light and Efficient Way to
Introduce Time in Recommender Systems

Elie Gu„ardia-Sebaoun
Sorbonne Universit«es,

UPMC, LIP6, UMR 7606,
4 place Jussieu,

F-75005 Paris, France
elie.guardia-

sebaoun@lip6.fr

Vincent Guigue
Sorbonne Universit«es,

UPMC, LIP6, UMR 7606,
4 place Jussieu,

F-75005 Paris, France
vincent.guigue@lip6.fr

Patrick Gallinari
Sorbonne Universit«es,

UPMC, LIP6, UMR 7606,
4 place Jussieu,

F-75005 Paris, France
patrick.gallinari@lip6.fr

ABSTRACT
For recommender systems, time is often an important source of in-
formation but it is also a complex dimension to apprehend. We
propose here to learn item and user representations such that any
timely ordered sequence of items selected by a user will be repre-
sented as a trajectory of the user in a representation space. This
allows us to rank new items for this user. We then enrich the item
and user representations in order to perform rating prediction using
a classical matrix factorization scheme. We demonstrate the inter-
est of our approach regarding both item ranking and rating predic-
tion on a series of classical benchmarks.

1. INTRODUCTION
During the last decade, the emergence of collaborative filtering

has demonstrated the interest of exploiting past ratings to estab-
lish relevant profiles for both users and items in various application
fields [17, 10]. Recent works has focused on profile enrichment:
the better we understand users’ tastes, the more accurate our sug-
gestions will be. Several directions have been investigated for this:
global ratings of reviews have been manually split into different
aspects [7], then [11] has proposed to automate this process by
learning a common latent space to represent the items, the users
and the reviews they wrote. Yet another approach directly exploits
tokens extracted from those reviews in order to improve user char-
acterization [15]. Time is another important dimension since the
perception of a user may change with time or be time dependent.
There are different ways to handle time, for example one can con-
sider the temporal evolution of items perception [9] or model the
evolution of the user’s way of thinking [12]. Considering the time
dimension usually considerably increases the complexity of recom-
mendation models. Instead of time, we propose to consider the or-
dering of user actions and to embed this information into the users
and the items representations for recommendation tasks. Ordered
sequences convey less information than full time sequences of user
actions, but allow for a compromise between the information pro-
vided to the system and the system complexity needed to handle

DOI: http://dx.doi.org/10.1145/2792838.2799676.

this information. More precisely, we consider ordered sequences
of items corresponding to sequences of user actions. We learn a
representation -a vector in a multidimensional euclidean space- of
individual items in the context of the sequences where they appear.
Each item will then have a unique vector representation in a vector
space. A user representation will be a function operating on this
item representation space that allows to move from one item to the
next one, or said otherwise to infer the next item from the current
one. In this paper, we consider a simple vectorial operator corre-
sponding to a translation. Given a sequence of items, this allows us
to infer the future sequence and then to recommend at each step an
ordered list of items to a user. We then enrich this representation
by additional dimensions and use a classical matrix factorization
scheme in order to learn this new representation for learning to pre-
dict item ratings like in classical collaborative filtering.

This approach offers two advantages: it models the dynamical
aspects of the user profile while keeping the number of parameters
low. We demonstrate the effectiveness of our approach on classical
review datasets through two evaluation schemes: item ranking and
rating prediction.

The paper is structured as follows: related work is reviewed in
Section 2, then we describe the model and the training algorithm in
Section 3. In Section 4, we describe the datasets and our results.

2. RELATED WORK
Recommender systems can be evaluated in two different setups,

one consists in recommending a set of items (ranking) [3, 13] while
the other aims at estimating how a user would rate a given item
(rating prediction) [17, 2, 8].

In the recommendation literature, time is often considered as a
relevant contextual information as it facilitates detecting the changes
in users preferences [18]. A better understanding of these changes
allow the recommender systems to capture periodicity in users in-
terests [5] or simply to improve its performance [9].

However, capturing temporal dynamics in a recommender en-
gine is not straightforward. For example using an exponential de-
cay to downweight older reviews either improve [6] or degrade [9]
the system performance. As another example, while in [1], the au-
thors used a time-dependent data partition to learn context-aware
user profiles, they found best results for a random split. [4] surveys
different ways to handle time inthe recommender literature like us-
ing temporal drift, heuristics or splits. Two recent interesting con-
tributions for introducing time in recommender systems are [19]
who uses Kalman filters to represent a transition between the latent
representations of the users over time and [12] who represents this
evolution as user experience gained over time.

Permission to make digital or hard copies of all or part of this work for personal
or classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice
and the full citation on the first page. Copyrights for components of this work
owned by others than the author(s) must be honored. Abstracting with credit is
permitted. To copy otherwise, or republish, to post on servers or to redistribute to
lists, requires prior specific permission and/or a fee. Request permissions from
Permissions@acm.org.
RecSys'15, September 16–20, 2015, Vienna, Austria.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-3692-5/15/09…$15.00.

3. CONTRIBUTION
We will use the following notations: Items (resp. users) are in-

dexed using i (resp. u) and gathered in a set: I = {ik}k=1,...,N (resp.
U = {uk}k=1,...,M). To each user corresponds a trace θu, i.e. an
ordered sequence of items he rated: θu = {(i,r)|i ∈ I} where r is
the rating ; those traces are gathered in a set Θ = {θu|u ∈U}.

Figure 1: The Mikolov et al. [14] architecture predicts the cur-
rent item based on the context

Item Latent Representation
Mikolov et al. Word2Vec model [14], as illustrated in Fig.1, uses
a neural network to build a latent representation of words depend-
ing on the surrounding words in a sentence, by optimizing a word
prediction criterion. In this paper we used the same neural net ar-
chitecture for learning from item sequences corresponding to user
traces {θu,u∈U}, a contextualized item representations. For every
item i, we build a representation φi (in blue in Fig.2) that considers
the items order in all the sequences corresponding to user traces.

Figure 2: Representation for d=2 of an extract of a user trace
(numbered items in blue) and the user representation as a vec-
tor (in green) for the RateBeer dataset.

Ranking Function Optimisation
For every user u, we learned a representation φu (u in Fig. 2) mod-
eling the way u moves from an item to the next one in the sequence
representation in the latent space, by performing a gradient descent
on the following ranking loss:

Lranking(Θ) =

∑
u∈U

∑
i∈θu

∑
j∈I\xn

[
1−|φu +φxn −φi|2−

∣∣φu +φxn −φ j
∣∣2]+ (1)

In equation 1, the + sign indicates that we used a hinge loss func-
tion. This means that during the learning phase, we only updated
the parameter values when Lranking(u, i,e)> 0.

φu is a vector which represents the mean of the translations needed
to move from one item in the representation space to the next one
in a sequence corresponding to a user trace. From these repre-
sentation, we can - by applying the φu translation from an item
representation- compute the nearest neighbors of the resulting point
and thus produce ordered list of items to recommend. Given a user
u and i the most recent item he reviewed, the item recommendation
is given by:

rec(u, i) = argmin j∈I
∥∥(φi +φu)−φ j

∥∥ (2)

Rating Function Optimisation
In a second step, we construct new representations γu and γi by
enriching φu and φi, in order for our model to tackle the rating task.

• γu = [γ̄u,φu] ,∀u ∈U

• γi = [φi, γ̄i] ,∀i ∈ I

Where {γ̄u,u ∈U} and {γ̄i, i ∈ I} are initialized randomly and learned
by performing a gradient descent for optimizing the following mean
square rating loss:

Lrating(Θ) =

∑
u∈U

∑
(i,r)∈θu

[µ+µu +µi + 〈γu,γi〉− r]2 +λΩ(γ̄u, γ̄i) (3)

We added the regularization term λΩ(γ̄u, γ̄i) in order to avoid
overfitting [16].

Given a user u and an item i, the rating score is computed using
the classical matrix factorization formula proposed in [8]. Let µ,
µu and µi denote respectively the overall bias, the user bias and the
item bias:

score(u, i) = µ+µu +µi + 〈γu,γi〉 (4)

4. EXPERIMENTS
In this section, we evaluate our model performance regarding

two different tasks, item ranking and rating prediction.

Baselines
In order to evaluate our rating prediction, we implemented a matrix
factorization (MF) as presented in [10] and the model presented by
McAuley et al. (EXP) in [12] as baselines. To evaluate our model
in an item ranking paradigm we used the popularity function that
always return the most popular result (POP) as a prediction.

Datasets
In order to perform our experiments, we used five time-labeled
datasets: BeerAdvocate and RateBeer datasets from [12] contain
reviews on beers, MovieLens10m and Flixster datasets contain re-
views on movies and FineFoods from [12] contains reviews from
the fine foods category from Amazon. The characteristics of each
dataset can be found in Table 1.

As the ratings were on different scales, we normalized them all
to be on the scale [0,5]. Then, we used the settings presented in
[19]: only the users with more than 20 reviews were kept, and every
dataset has been divided in time windows, each representing a year
period (except for the Flixster dataset which is divided bimonthly
regarding its smaller timespan).

In order to perform the evaluation, the last three time windows
were selected as test U and for each U, we used all the previous
windows for training T . We ran each experiment 5 times on each
window and report the average results for reliability.

Figure 3: Results regarding the item prediction for each inference model given for K = 50, 100, 200, 300, 400 and 500 and expressed
in recall.

Dataset # items # users # reviews
BeerAdvocate 66051 33387 1586259

RateBeer 110419 40213 2924127
MovieLens 10000 72000 10000000

Flixster 49000 1000000 8200000
FineFoods 74258 256059 568454

Table 1: Datasets characteristics.

Evaluation
Item ranking
We evaluated our model by computing the Recall@K measure for
K=300 and compared them to the baselines. The results are pre-
sented in Table 2. A plot of the evolution of recall@K for K vary-
ing between 50 and 500 on the BeerAdvocate and Flixster datasets
is also available in Fig.3.

Dataset MF POP EXP DIR
BeerAdvocate 0.001 0.022 0.033 0.126

RateBeer 0.001 0.008 0.021 0.106
MovieLens 0.118 0.027 0.12 0.15

Flixster 0.005 0.024 0.028 0.08
FineFoods 0.042 0.027 0.054 0.156

Table 2: Ranking Results averaged over all three time windows,
given in Recall@300 for the matrix factorization (MF), the ex-
perience based model (EXP), the popularity model (POP) and
the directional vector based model (DIR)

Our model (DIR) clearly outperforms all other models. This cor-
roborates the relevance of taking into account the sequential struc-
ture of the user-item interaction as a core feature. Furthermore, the

MF and EXP baselines show that the rating prediction is not a good
indicator for item prediction ; this validates the idea that using the
same representations to compute both rating and ranking values re-
quires some sort of tradeoff. The DIR model uses two different
yet intertwined representations, freeing it from the aforementioned
tradeoff constraint.

Rating prediction
The results of our experiments expressed in MSE can be found in
Table 3. We compared our items to a classic Matrix factorization
as described in [10] and to the EXP model.

Dataset MF EXP DIR
BeerAdvocate 0.4 0.366 0.361

RateBeer 0.343 0.307 0.292
MovieLens 0.691 0.684 0.661

Flixster 0.892 0.892 0.817
FineFoods 1.365 1.337 1.06

Table 3: Rating Results averaged over all three time windows,
given in MSE for the matrix factorization (MF), the experi-
ence based model (EXP) and the directional vector based model
(DIR)

Here also, the proposed model significantly outperforms both
models, showing that incorporating the order information allows
learning better user and item representations.

5. CONCLUSION AND FUTURE WORK
In this paper, we have proposed a light and scalable latent method

for recommendation using item sequence information which has
been shown to be also efficient as we performed evaluations re-
garding two different tasks: rating prediction and item ranking.

Regarding future work, there are many paths to explore. First,
we would like to find better ways to model the user representation
e.g. using a more sophisticated prediction functions. We would also
like to add an expertise notion in order to model more precisely the
temporal dimension. Last, we think that touristic data follow the
same kind of temporal evolution as web data and we plan to adapt
this method to visit recommendation.

6. ACKNOWLEDGEMENTS
The authors would like to thank the AMMICO project (F1302017

Q - FUI AAP 13) for funding our research.

7. REFERENCES
[1] L. Baltrunas and X. Amatriain. Towards time-dependant

recommendation based on implicit feedback. In In Workshop
on context-aware recommender systems (CARS09, 2009.

[2] J. Bennett and S. Lanning. The netflix prize. In KDD Cup
Workshop 2007, pages 3–6, 2007.

[3] J. S. Breese, D. Heckerman, and C. Kadie. Empirical
analysis of predictive algorithms for collaborative filtering.
In Conference on Uncertainty in Artificial Intelligence, pages
43–52, 1998.

[4] P. Campos, F. Dı́ez, and I. Cantador. Time-aware
recommender systems: a comprehensive survey and analysis
of existing evaluation protocols. User Modeling and
User-Adapted Interaction, 24(1-2):67–119, 2014.

[5] P. G. Campos, F. Diez, and A. Bellogin. Temporal rating
habits: A valuable tool for rating discrimination. In
Proceedings of the 2Nd Challenge on Context-Aware Movie
Recommendation, CAMRa ’11, pages 29–35, New York,
NY, USA, 2011. ACM.

[6] Y. Ding and X. Li. Time weight collaborative filtering. In
Proceedings of the 14th ACM International Conference on
Information and Knowledge Management, CIKM ’05, pages
485–492, New York, NY, USA, 2005. ACM.

[7] G. Ganu, N. Elhadad, and A. Marian. Beyond the stars:
Improving rating predictions using review text content. In
WebDB, 2009.

[8] Y. Koren. Factorization meets the neighborhood: A
multifaceted collaborative filtering model. In ACM SIGKDD,
pages 426–434, 2008.

[9] Y. Koren. Collaborative filtering with temporal dynamics. In
Proceedings of the 15th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining,
KDD ’09, pages 447–456, New York, NY, USA, 2009. ACM.

[10] Y. Koren, R. Bell, and C. Volinsky. Matrix factorization
techniques for recommender systems. Computer,
42(8):30–37, Aug. 2009.

[11] J. McAuley and J. Leskovec. Hidden factors and hidden
topics: Understanding rating dimensions with review text. In
ACM Conference on Recommender Systems, pages 165–172,
2013.

[12] J. J. McAuley and J. Leskovec. From amateurs to
connoisseurs: modeling the evolution of user expertise
through online reviews. In World Wide Web, 2013.

[13] M. R. McLaughlin and J. L. Herlocker. A collaborative
filtering algorithm and evaluation metric that accurately
model the user experience. In ACM SIGIR, pages 329–336,
2004.

[14] T. Mikolov, K. Chen, G. Corrado, and J. Dean. Efficient
estimation of word representations in vector space. CoRR,
abs/1301.3781, 2013.

[15] M. Poussevin, V. Guigue, and P. Gallinari. Extended
recommendation framework: Generating the text of a user
review as a personalized summary. CoRR, abs/1412.5448,
2014.

[16] S. Rendle and L. Schmidt-Thieme. Online-updating
regularized kernel matrix factorization models for large-scale
recommender systems. In Proceedings of the 2008 ACM
conference on Recommender systems, pages 251–258. ACM,
2008.

[17] P. Resnick, N. Iacovou, M. Suchak, P. Bergstrom, and
J. Riedl. Grouplens: An open architecture for collaborative
filtering of netnews. In ACM Conference on Computer
Supported Cooperative Work, 1994.

[18] L. Xiang, Q. Yuan, S. Zhao, L. Chen, X. Zhang, Q. Yang,
and J. Sun. Temporal recommendation on graphs via long-
and short-term preference fusion. In Proceedings of the 16th
ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, KDD ’10, pages 723–732, New
York, NY, USA, 2010. ACM.

[19] C. Zhang, K. Wang, H. Yu, J. Sun, and E. Lim. Latent factor
transition for dynamic collaborative filtering. In Proceedings
of the 2014 SIAM International Conference on Data Mining,
Philadelphia, Pennsylvania, USA, April 24-26, 2014, pages
452–460, 2014.

