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Abstract. Understanding urban mobility is a fundamental question for
institutional organizations (transport authorities, city halls) and it in-
volves many different fields like social sciences, urbanism or geography.
With the increasing number of probes tracking human locations, like
RFID pass for urban transportation, road sensors, CCTV systems or cell
phones, mobility data are exponentially growing. Mining the activity logs
in order to model and characterize efficiently our mobility patterns is a
challenging task involving large scale noisy datasets.
In this article, we present a robust approach to characterize activity
patterns from the activity logs of a urban transportation network. Our
study focuses on the Paris subway network. Our dataset includes more
than 80 millions travels made by 600k users. The proposed approach is
based on a multi-scale representation of the user activities, extracted by a
nonnegative matrix factorization algorithm (NMF). NMF is used to learn
dictionaries of usages that can be exploited in order to characterize user
mobility and station patterns. The relevance of the extracted dictionaries
is then assessed by using them to cluster users and stations. This analysis
shows that public transportation usage patterns are tightly linked to
sociological patterns. We compare our approach with a k-means baseline
that does not take into account user information and demonstrate the
interest of characterizing user profiles to obtain better representations of
stations.

1 Introduction

The literature on urban mobility is vast and diverse but until recently, it has
mainly focused on explanatory statistics of global behaviors. With the develop-
ment of tracking techniques such as mobile phone networks, the last decade has
seen a multiplication of quantitative statistical studies. For example, frequency
scales of travels are analyzed in [3] and multiple studies have shown that it is
possible to predict most daily travels [19]. For public transportations, some early
studies focused on opinion pool to analyze the modification of user behaviors af-
ter the creation of new lines [6]. In this domain, quantitative data are recent
and linked to the adoption of smart cards to authenticate users in most cities,
like e.g. in London, Lisbon or Paris. Up to now, they have been exploited for
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problems like bottleneck detection [4] or frequent pattern prediction [5], which
turns out to determine the time and location of the next trip for a given user.

However, no study has focused on mining the temporal and spatial profiles
of individual users. Analysis have been performed on Shanghai taxis [16] and
Parisian public bicycle sharing system [17] for example, but they have been
mainly focused on extracting global statistics and none of them has analyzed
individual user traces across multiple travels during multiple days. Discovering
latent usage of public transportations is a crucial need for institutional author-
ities: lot of efforts are spent on conducting ground surveys to achieve a partial
understanding of the habits of their clients. Such knowledge is important for
pricing policies, load management and planning. We propose to exploit ticketing
data to extract regularities in usage patterns in order to identify the hidden
activities that causes each individual event (i.e. to explain all logs in the data).

Our analysis focuses on data provided by the STIF (Syndicat des Transports
en le de France, Paris area transport authority) and contains around 80 millions
log entries overs 91 days, with an explicit identifier for both the station (300 loca-
tions) and the user (600k ids). The noise inherent to the individual activity traces
and the size of the logs explain why ticketing data has hardly been used. We
propose here an experimental study to show the potential of machine learning to
exploit transport data. We introduce a user centered multi-scale representation
of the data and we use a constrained nonnegative matrix factorization (NMF)
to extract latent activity patterns. Based on this extracted representation, we
build station profiles that we cluster and analyze the obtained segmentation.
We demonstrate the interest of our approach with respect to a k-means base-
line : we show that an efficient profiling requires a user modeling step, even if
finally we focus on station representation. We also focus on data reconstruction
and abnormality detection: our model is able to output log predictions. Using a
symmetrised Kullback-Leibler divergence between ground truth and predictions
reveals some abnormalities in the log flow associated to each station.

The paper is organized as follows. We briefly review literature on related work
in section 2. To face the challenge of data size and sparsity, we propose in section
3 a model to aggregate ticketing logs per user and station on three frequency and
two temporal scales. In section 4 we present the nonnegative matrix factorization
model used to extract the usages and latent activities from user events. Analysis
of the results on our dataset is presented in section 5. As an application case, in
section 6 we illustrate how to use this model for clustering stations and extracting
correlations between temporal habit and sociological realities.

2 Related work

We present below a synthesis on the related work both on urban mobility un-
derstanding and on nonnegative matrix factorization algorithms.
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2.1 Urban mobility

The problem of understating urban mobility has been studied at different levels.
[2] studied city planning policies in order to promote the use of performance
indicators for sustainable public transports. Many studies [3, 8] have focused on
private vehicle travels, using mobile phone networks to track a population and to
characterize the time scales of these travels. In [19], the authors showed that most
private vehicle travels are predictable and in [22] they also linked travel behaviors
and social network behaviors. The recent study [15] also uses mobile phone
networks to extract hot spots from week day travels in the 31 biggest Spanish
cities while [10] focused on car traffic analysis and abnormality detection. [14]
used 6 months of GPS data coming from the 33000 taxis in Beijing, covering an
impressive 800 million kilometers, to analyze the causes of possible abnormalities.
Also with GPS data but on 2000 Shanghai taxis, [16] used nonnegative matrix
factorization to characterize the behavior of taxi drivers. Finally, several recent
works have focused on new ways to track users. For example [13] describe the
use of Bluetooth scanners to track pedestrians visiting Duisburg zoo. Similarly
in Paris, [17] mined spatio-temporal clusters using Paris Velib’ data (city shared
bicycle service), but without having access to the user identification, they could
not track individual users.

The creation of smart cards to authenticate users [6] allows for wider scale and
finer analysis. One important target has been the identification of bottlenecks in
the network. For instance [4] studied spatio-temporal distribution of users in the
subway of London. In the same way, [5] focused on itinerary prediction, during
week days for buses, so as to inform users in case of problems in the network,
mining a dataset of 24 million travels of 800000 users over 61 days.

In contrast with previous work focused retrieving global traffic information,
the analysis presented here focuses on discovering a collection of trip habits that
can be used to describe individual users. As in [16], our model relies on a modified
nonnegative matrix factorization, described in section 4, to extract behavioral
atoms. We also exploit the user identification to characterize travels through the
notion of periodicity.

2.2 Nonnegative matrix factorization (NMF)

Matrix factorization approaches have long been used in data mining and are well
described in [7]. Nonnegative matrix factorizations [1] extract constructive rep-
resentations over a set of extracted basic components out of nonnegative data.
Each basic component is named atom and the extracted component collection
is named dictionary. The dictionary is learned such that each data can be ap-
proximate by the positive weighted combination of atoms of the dictionary. A
such weighted vector over the atoms is named code. Matrix factorization has
shown interesting performances as a feature extractor when the nonnegativity
is a sensible part of the data either to obtain a composition percentage over a
dictionary like in face detection [24] or when a negative coding does not make
sense like in topic extractions from document application [18].
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Matrix factorizations solve two problems at once: learning the dictionary
and the associated code. Constraints are generally added during the learning
algorithm as regularization terms. Nonnegativity [12] and sparseness [11] are
two common constraints. As no subtraction is allowed with the nonnegativity
constraint, Nonnegative Matrix Factorization (NMF) is more likely to obtain
part-based representation with atoms being parts of the initial signals and the
code being the proportion of each atom in the signal. Sparseness forces the model
to reconstruct initial data using only a few atoms.

While a completely different field, our task might be linked to the separation
of musical sources [21] or note identification in a music track [20]. The log of a
user corresponds to frequent and multiple activities, it can be seen as a stream
of pulses generated by multiple sources [9]. However the variability of the time
of authentication, which is our reference event, hinders the approaches based
frequency representation used in most signal applications. In [23], nonnegative
matrix factorization has been adapted to time event detection to identify time-
shift invariant patterns. It cannot be used as such to detect temporal behaviors
as they are typically time dependent: our idea is to characterize activities based
on event occurrence.

3 Subway data analysis and modeling

In this study, we aim at discovering patterns in the subway usage of any user
in order to characterize each log by a corresponding activity: an event which
occurs every working day around 7 a.m. may be categorized as going to work,
an event which occurs some Friday night as nightlife, etc. Tagging authentication
events with a social activity allows us to characterize both the user (workplace,
home, friends’ home, recreational habits) and the station at the same time. We
propose a model extracting meaningful activity temporal patterns and allowing a
categorization of the subway traffic according to different usages. In this section,
we first describe the data and then our modeling.

3.1 Ticketing logs

We use a dataset collected by the Syndicat des Transports en Île-de-France
(STIF), the transport organization authority in charge of Paris public trans-
port. More than seven millions of Paris transport users have subscribed to a
pass managed by the STIF. The ticketing logs record every authentication of
any pass with its location and precise time. This dataset provides an accurate
real-time picture of the use of a public transportation system. The analysis is
challenging for two reasons: the size of the data (5GB/month) coupled to the
sparsity of individual user data hinders the mining of frequent behavioral pat-
terns; secondly, the dataset contains only a subset of the urban network activity.
The STIF estimates that 20% to 30% of logs are missing, either due to the
malfunctioning of a turnstile or to the user voluntary not authenticating itself.
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Moreover, the logs correspond to a check-in action, as pass checkpoints are posi-
tioned at entry points in metro stations and buses, and not at exit points. Thus
the user’s itineraries are not explicitly present in the dataset, only a (large) part
of their check-ins are recorded.

3.2 Modeling

In the following, u will refer to a user, s to a station and t to a time. An
authentication at time t is thus a triplet ` = (u, s, t). The mobility of a user is
partially described by the log of its authentications, L = {` = (u, s, t)}. Each
authentication is related to a latent activity of the user. We propose in this
section a latent model using a multi-scale aggregation of events by day and by
week.

A first difficulty for identifying latent activities lies in the wide frequency
scale of the events. Non-frequent events are hidden by frequent ones, any ap-
proximation will catch frequent day-to-day activities and miss the less frequent
patterns. We propose to dispatch user activities in three frequency bands: high
frequency for events occurring more than twice a week, medium frequency for
events occurring at least once each 10 days and less than twice a week, and low
frequency for unusual events. We use the spatial information to filter events in
the frequency bands: for a given user, each event is associated to a frequency
band based on the number of times the event station appears in the user log.

We make the assumption that within a frequency band activities are more
characterized by their occurrence time than by their location. On the one hand,
this assumption correctly interprets regular activities occurring at the same place
(like leaving for work, going back home); on the other hand, it allows us to cap-
ture recreational activities that occur in wide areas (like going out to restaurant,
visiting friends).

Within a frequency band, an event is represented by the couple (u, t). The
user behavior can be modeled by the probability function of the authentication
time for this user in the three frequency bands: pb(t|u), b ∈ {low,medium, high}.
Our goal is to discover a set of activities A over which the user log can be
decomposed as: pb(t|u) =

∑
a∈A p(t|a) ∗ p(a|u). Our approach relies on a multi-

scale representation of authentication events, by day and by week. We chose to
characterize an activity, that we denote a, by the probability function of the
ticketing event during the day fd,a(t) = p(t|a) and during the week fw,a(t) =
p(t|a) with t respectively a day time and a week time variable. As we are more
interested on the discovery of widespread usages, our objective is to infer a small
set of activities A sensible for all users.

This formalism supposes a weekly pattern and does not allow to model ex-
plicitly the localization information. However, the station information can still
be decoded from the individual user data knowing the activity decomposition
for a user.
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3.3 Notations and data representation

We first filter authentication triplets (u, s, t) in three frequencies bands: low for
couples (u, s) occurring only a few times, high for frequent couples (u, s) and
medium for everything in between. On figure 1 is represented the authentication
set of a single user with stations sorted by frequency, from low to high. The two
most frequent stations for this user are likely to be its home and workplace.
For all frequency bands f in {low,medium, high}, we build a multi-scale vector
representation of a user as the concatenation of the two probability functions
of the authentication time during the day and the week. Both are empirically
estimated using a time step of 15 minutes for the day and 2 hours for the week.
Thus each user is represented by a n dimensional vector with 60/15 ∗ 24 = 96
dimensions for the day and 24/2∗7 = 84 for the week. We denotem the number of
users. As a result, data are represented by a set of 3 matrices: {X(b) ∈ Rm×n|∀b ∈
{low,medium, high}}.

week00
week01

week02
week03

week04
week05

week06
week07

week08
week09

week10
week11

week12
week13

Fig. 1: A user of the Parisian network authenticated at 10 stations over 91 days.
Stations are ordered by decreasing frequency from bottom to top. The most
frequent stations are relative to the residence and the workplace. Less frequent
ones are likely to correspond to recreational activities.

Figure 2 shows a subset of user profiles aggregated without the frequency
filtering. The data is noisy reflecting users’ individual variance. Still this repre-
sentation extracts peaks of activities. As argued above, without the frequency
filtering most of the density is used by recurrent commuting patterns. User pro-
files after frequency filtering are represented in figure 3, where low, medium and
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high are respectively the bottom, middle and top. Typically, commuting pat-
terns are present in the high frequency band and week-end and evening events
are present in the other two bands. Some users have no event in a particular
band, which is a strong characterization of their behaviors.

2am 6am 8am
12am 5pm

10pmSun
Mon Tue

Wen
Thu Fri Sat

6.0

5.4

4.8

4.2

3.6

3.0

2.4

1.8

1.2

lo
g(
p
(u
|t)

)

Fig. 2: Aggregated user profiles over time ordered by time of their highest peak.
Concatenation of the day and week scales.

4 Learning usage atoms with NMF

The previously extracted matrices from authentication data represent the aver-
aged daily and weekly user profiles. We aim at extracting the latent behavioral
patterns which compose these profiles. Our goal is to achieve a granular iden-
tification of behavioral patterns, allowing us to characterize heavy and light
traffic periods, during evening, nights and week-end. Thus the challenge here is
to extract generic patterns reflecting the most common patterns like commuting
but also less frequent ones happening during evenings and week-ends without
over-fitting and learning patterns specific to only of small set of users.

We propose to use a nonnegative matrix factorization algorithm to extract
the pattern dictionary with a mono-modal constraint on dictionary rows. As
nonnegative matrix factorization decomposes each sample as a positive linear
combination of atoms, it is well-suited to our problem: we seek to approximate
a user by a set of complementary behaviors.

Formally, the goal is to approximate each matrix X by the product of two
positive matrices, D the pattern dictionary and A the code matrix: a row of
D, named atom, represents the time profile p(t|a) of a particular activity a and
a row of A contains the coordinates of a user in this usage space, that is the
repartition p(a|u), for the user u, of the activities in A. These coordinates can
be viewed as the usage probabilities for the user.
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We want to take into account the following constraints:

– normalization: each dictionary atom is the concatenation of the daily and
the weekly information representing the probability density function of the
ticketing event; thus both parts of the dictionary atom has to sum up to 1;

– mono-modal atoms: an atom is supposed to explain a unique activity in the
day, localized at a precise time window;

– sparsity of the reconstruction: a user has naturally few activities, thus only
a small set of dictionary atoms should have a non-zero weight in each row
of A.

The dictionaries for the three frequency bands are distinct: they can be
learned separately. For each frequency band, the problem can be formalized
as the minimization of a loss function L under the constraint C(D) on the dic-
tionary D:

L(X,A,D) =
1

m
‖X −A.D‖2 + λ|A| (1)

C(D) : D ≥ 0,∀i,
∑

j<tday

Dij = 1,
∑

tday≤j<tweek

Dij = 1 (2)

The NMF optimization is done using a projected gradient (with projection
φ on the constraints) for the dictionary and multiplicative update rules for the
codes (see algorithm 1).

D,A← rand ;
while not converged do

D = D − µ(AT (X −AD);
D = φ(D) ;

A = A� XDT

λ+ADDT ;

end
Algorithm 1: NMF update rules: projected gradient on D and multiplicative
update rules on A

To force the mono-modal property of dictionary atoms, an additional projec-
tion is used every 100 iterations, by applying a Gaussian filter to each atom in
order to capture only the highest peak of the daily part:

∀i, di,day ← di,day � exp(− (tday − tpeak)2

2σ2
) (3)

where � is the element-wise multiplication, tday ranges over the day dimen-
sions of the atom, tpeak is the time corresponding to the peak day time in the
atom and σ a fixed parameter defining the granularity of the time window and
di,day is the part of i-th row of the dictionary D accounting for daily patterns.
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Fig. 3: Aggregated user profiles overtime with frequency filtering. Events with
high, medium and low frequencies are in top, middle and bottom charts respec-
tively. Concatenation of the day and week scales.

5 Analysis of extracted representation

We focus our analysis on the subway traffic, excluding buses, trains and trams.
As we are looking for mobility usages. Users were filtered to retain only those
with enough travels to have a significant activity and subscribing a monthly pass.
Our dataset is composed of around 80 million user authentications at one of the
300 stations over 91 days for the subway network of the city of Paris, concerning
around 600k unique users.

The k = 100 atoms were extracted with 180 features of m = 600000 users,
using a 8 cores (3.07 GHz) and 16 GB of RAM PC. It takes approximately
10 hours to complete the 1k iterations of the nonnegative matrix factorization
algorithm.

Extracted atoms are represented in figure 4 where they are sorted by their
occurrence of highest peak. In the high frequency band, where commuting pat-
terns are the most frequent ones, the mono-modality allows the discovery of
joint leaving-for-work and going-back-home patterns. The extraction is mainly
focused on working days since only a small part of the density occurs during
week-ends. With most atoms occurring in the morning the high frequency band
has a fine granularity on the leaving-for-work usage. In the medium frequency
band more atoms are devoted to lunch activities and they typically are active
during working days too. Still some atoms, bottom ones, are catching evening
and week-end activities. In the low frequency band, density of the week is more
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evenly distributed through the seven days. A vast majority of the atoms are
representing evening and nightly activities. Note that the working hours of the
subway are 5:30 am to 2 am, with a slight variance over days, which explains
why there is no activity corresponding to the 2 am to 5:30 am period.

2am6am8am
12am 5pm

10pmSun
MonTue

Wen
Thu Fri Sat

b=high

2am6am8am
12am 5pm

10pmSun
MonTue

Wen
Thu Fri Sat

b=medium

2am6am8am
12am 5pm

10pmSun
MonTue

Wen
Thu Fri Sat

b=low

5.0

4.5

4.0

3.5

3.0

2.5

2.0

1.5

lo
g(
p

(b
)
(a
|t)

)

Fig. 4: Activity atoms extracted from the profiles per frequency band. Concate-
nation of day and week scales. Blue values are zeros, red values are peaks.

Quality measures of the nonnegative matrix factorizations are presented in
table 1. The data sparseness is the average percentage of nonzero entries per
user. The dictionary sparseness is the average percentage of nonzero entries per
dictionary atom. The code sparseness is the average percentage of nonzero entries
per user code (a row of α). The important activities row counts the average
number of activities responsible of 90% of a user’s profile. It is interesting to
see that the factorization on the low frequency band scatters the density over
more activities than the medium and high band. It is coherent with the fact that
infrequent validations correspond to more diverse usages (visiting friends, hiking
in the city, going to a restaurant,...). This value has to be put in perspective with
the bar plots and histograms of figure 5. The bar plots of the top row of figure
5 represents, per frequency band, the percentage of users that have a non-zero
weight attributed to each dictionary atom. The shape of the curves indicates
that all dictionary atoms are evenly used to describe users. This is the sign that
the model did not over-fit the dataset and it is one of the property we were
looking for: the extracted behavior pattern, the dictionary atoms, are not to
specific to one particular user. The bottom row histograms count the number
of dictionary atoms per user. The first noticeable effect of the frequency filter
is that in the medium and high frequency bands a great proportion of users
are characterized by a lack of events. It also confirms the good sparsity of the
extracted representation: the NMF uses few dictionary atoms to reconstruct each
user profile. NMF appears as a robust solution to extract latent activity patterns
from noisy temporal data.

6 From users to stations

Using NMF, each user is now represented as a vector of usage weights. In this
section we analyze the distribution of the individual usage patterns according
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NMF low medium high

Data sparsity (std) 16.98 (0.38) 7.97 (0.27) 16.88 (0.37)
Dictionary sparsity (std) 51.15 (0.50) 52.41 (0.50) 51.93 (0.50)
Code sparsity (std) 9.23 (0.29) 4.33 (0.20) 5.46 (0.23)
Important activities (std) 4.38 (0.20) 1.94 (0.14) 1.68 (0.13)

Table 1: NMF sparsity measures on the low, medium and high frequency bands
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Fig. 5: Top row represents usage of each dictionary atom over the set of users per
frequency band. Bottom row contains the histogram of the number of dictionary
atoms having non-zero weights per user per frequency band.



12

to the metro station geographical position. Formally, we want to estimate the
probability function p(a|s) of activities over subway stations. We will use the
following decomposition: p(a|s) =

∑
u p(a|u)p(u|s). To simplify the estimation

of p(u|s), we consider that it is uniform over the stations visited by the user in
the frequency band of the activity.

We build the representation of each station for each frequency band as the
sum of all the activities of all the users authentication at this station weighted
by the overall usage in this frequency band. This gives us a set of three rep-
resentation matrices for the station, one per frequency band, a row of which
representing a particular station. As we extract 100 atoms per frequency band
and there are around 300 stations in our problem, these matrices have small
dimensions.

We use a multi-scale clustering algorithm, similar to what [25], to cluster
together stations into coherent groups of behaviors. Since the matrices are small
(300× 100), the clustering is fast (a couple of seconds) on a typical computer. It
is stable with respect to the initialization. For simplicity, we present the result
using 5 clusters to capture macroscopic groups of behaviors in the network. In
order to evaluate our approach, we compare NMF-clustering results with a basic
k-means learnt over raw station logs (without taking into account user profiles).

Figure 6 illustrates the result of the k-means procedure as well as the asso-
ciated prototypes. Results are very hard to interpret: classically, a main cluster
corresponds to standard behavior while smaller classes model what appear as
random variations around the first prototype.

Figure 7 represents the NMF clustered map of the subway stations in Paris
where each station is colored (and shaped) according to its cluster. Some geo-
graphical patterns clearly emerge. There are two inner clusters in the center, one
belt-like cluster around this center and the separation of the western and eastern
sub-urban regions around Paris. It is interesting to compare this clustering to
the sociological geography of the city. First the touristic center of Paris with
Champs Élysées and Concorde, the Louvre Museum, the Garnier Opera, Notre
Dame and the Sacré Cœur are in the same cluster. Second, the belt-shaped
cluster, here in yellow squares, corresponds to the limits between Paris and the
surrounding cities. The city limits are marked by Porte (gates in French) as a
reminder of the gates piercing the old fortified walls of the medieval Paris. And
last but not least, the clustering opposes the posh western sub-urban regions of
Paris to the relatively poorer eastern sub-urban regions: the distinction, based
on temporal patterns, is interesting as the users might have the same patterns
since they are at the same distance from the city center. So the distinction goes
beyond the simple geographic explanation and touches a sociological repartition
of work hours.

The NMF has provided centroids composed of one pattern per frequency
band. For any given cluster, the high frequency band comes from the usage
pattern of people that frequently check-in in one of the stations meaning they
either live or work there. The low frequency band corresponds to people that
hardly use the station (less than once every ten days) and is basically composed
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of evening events, meals or sleepovers. The medium band corresponds to every-
thing in between. The difference between the patterns of the centroids and the
average network load are represented in figure 8, with each centroid being col-
ored as the corresponding cluster in figure 7. A positive spike means more users
authenticating themselves at any station of the cluster than in average over the
network. A negative spike is the opposite: a deficit of users compared to average
load.

As only the check-in authentications are available to us, the high frequency
band corresponds to the habit of the people living or working near the stations
of the cluster while the medium and low frequency bands correspond to people
check-in to travel elsewhere, meaning that they came to the stations of the cluster
for some periodical activity like pubs, restaurants, theaters and so on and are
now leaving.

The last line is the belt cluster that corresponds to the average behavior of
standard Paris dwellers which is coherent with the fact that stations composing
this cluster are at the limit of the city. The first and third lines are close one
to another. The former corresponds to the touristic center of Paris which is
sensible as it is characterized by a lack of check-ins in the morning for no working
class is living there. Once again the temporal pattern is linked to a sociological
repartition. The latter contains the big clusters corresponding to train stations.
People working in sub-urban regions where the subway network is not present
typically take the train to one hub and then finish their journey with the subway.
This explains the main difference in the high frequency band between the two
clusters: the peak around nine in the morning. It is also noticeable that these two
clusters are the only ones having people departing after infrequent activities, as
can be seen on the low frequency band. The second and fourth lines correspond
respectively to the western and eastern sub-urban regions around Paris. As said
earlier they are mainly residential areas with the western part being wealthier
than the eastern one. This is confirmed by the night part of the medium and low
frequency bands: in contrast to the center clusters, few people are leaving these
clusters after some episodic activities. The phenomenon of a peak in the medium
band correspond to the activity of leaving for work from a station that is not
the main home of a user and is typical of sleepovers. Finally the commuting
patterns of the two clusters is different. The model is able to extract fine grained
representations and distinguish the clusters as they do not commute at the same
time. Stations in poorer regions see a peak early in the morning followed by
a deficit of users at the same time as the affluence peak in stations of posh
neighborhoods.

7 Abnormality detection

The NMF decomposition allows to reconstruct the temporal log flow of a station.
We exploit this ability to build the standard weekly profile associated to every
stations and we measure the distance between reconstructed data and ground
truth using a symmetrised Kullback-Leibler divergence (KL). In order to improve
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high day high week medium day medium week low day low week

Fig. 8: Difference to the average behavior per multi-instance centroids. Juxtapo-
sition of the day and week scales for the high, medium and low frequency bands
respectively.

robustness, we aggregate the results respectively over days and weeks. Figure 9
illustrates some promising results: whereas raw log flows seem roughly standard,
KL measure enables us to point out clearly local abnormality at different scales.

8 Conclusion

In this work, we have proposed a new approach to urban mobility analysis intro-
ducing a machine learned based modeling that fully exploits the data available
since the introduction of RFID cards in public transportation. We gave pro-
posed a multi-scale modeling of event logs of users in order to retrieve latent
activities of users. A nonnegative matrix factorization algorithm with sparsity,
mono-modality and normalization constraints is used to build the set of dictio-
nary atoms representing these activities. We have analyzed and exploited the
extracted representations of the users to build stations profiles and to cluster
them. We showed the interest of our formulation with respect to simpler a k-
means that does not take into account user modeling. Finally we demonstrate
our ability to reconstruct a temporal log distribution at the station scale as well
as to detect abnormalities in the log flow.

The study of these clusters has revealed that temporal patterns are able to
capture fine grained representations of behaviors from roughly aggregated noisy
ticketing logs. We used here the extracted latent activities in a qualitative study.
From a machine learning point of view, the extracted dictionary atoms contains
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Fig. 9: Ground truth profiles and symmetrised KL divergences for 2 stations
(Concorde and Jussieu) respectively aggregated by day and week.

meaningful high-level information that can be exploited further to jointly char-
acterize users and locations.

One main perspective of this work concerns the design of an embedded model
able to model all frequency scale at the same time. Such a model will not be
easy to develop; indeed, preliminary works show that cascade approches mainly
focus on frequent events without describing rare phenomena.
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from taxi trips in urban area. PLoS ONE (2012)
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