

DE L'INTELLIGENCE ARTIFICIELLE AUX MODÈLES DE LANGUE RÉFLEXIONS ALGORITHMIQUES

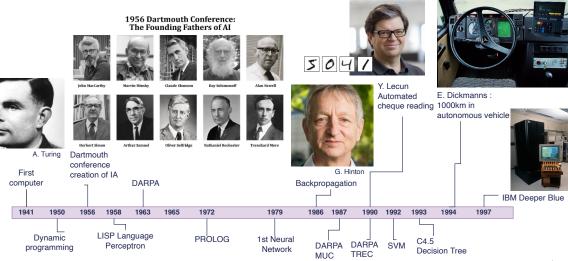
Lundi 16 Septembre 2024

Vincent Guigue
prenom.nom@agroparistech.fr
https://vguigue.github.io

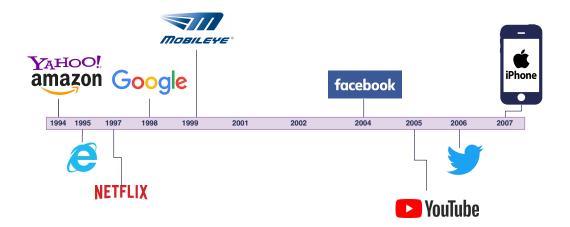
EKINOCS

From AI to Machine-learning

The Birth of Computer Science... And of Artificial Intelligence

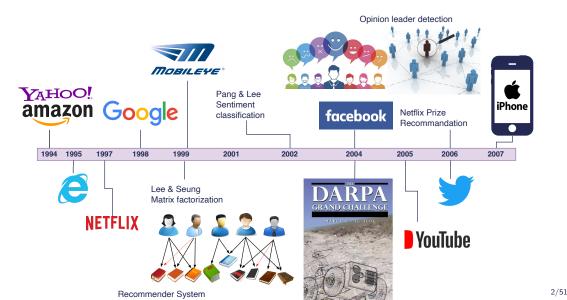


Emergence (or Refoundation) of the GAFAM/GAMMA

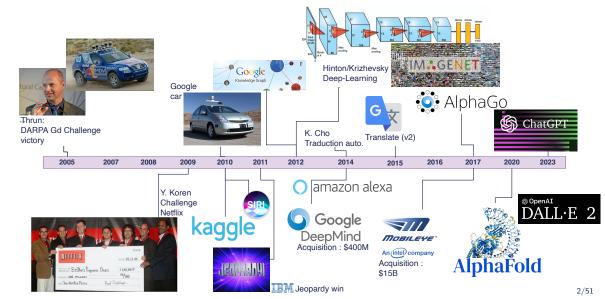


A Rapid Tour of Artificial Intelligence

Emergence (or Refoundation) of the GAFAM/GAMMA

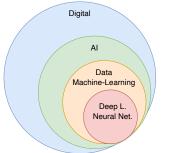


A Wave of Artificial Intelligence



	Introduction 000000	Deep learning & NLP	chatGPT	Limits	Uses	Risks	Conclusion
	A	0 84 1.					

Artificial Intelligence & Machine Learning



Input (\mathbf{X})	Output (Y)	Application			
email	→ spam? (0/1)	spam filtering			
audio	\rightarrow text transcript	speech recognition			
English	→ Chinese	machine translation			
ad, user info	→ click? (0/1)	online advertising			
image, radar info	\rightarrow position of other cars	self-driving car			
image of phone –	→ defect? (0/1)	visual inspection			

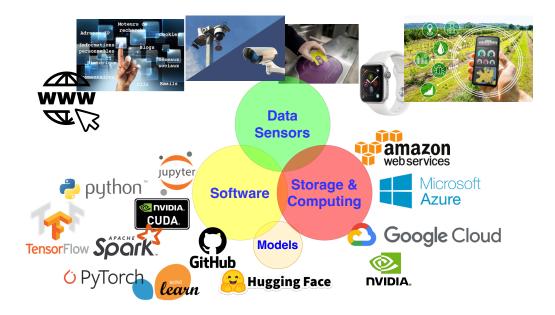
Al: computer programs that engage in tasks which are, for now, performed more satisfactorily by human beings because they require high-level mental processes.

Marvin Lee Minsky, 1956

N-AI (Narrow Artificial Intelligence), dedicated to a single task

 \neq G-AI (General AI), which replaces humans in complex systems.

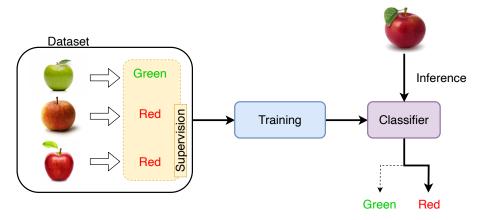
Andrew Ng, 2015



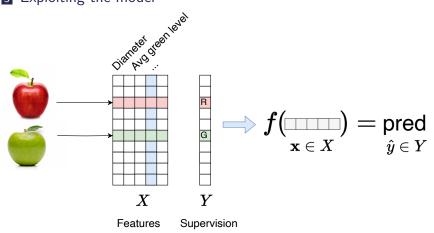
Risks

Conclusion

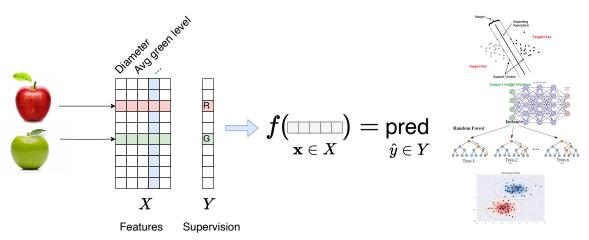
- **1** Collecting labeled **dataset**
- 2 Training classifier
- **3** Exploiting the model



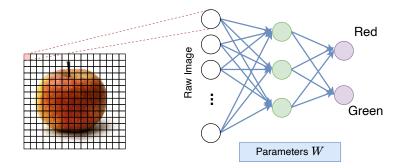
- **1** Collecting labeled **dataset**
- 2 Training classifier
- **3** Exploiting the model

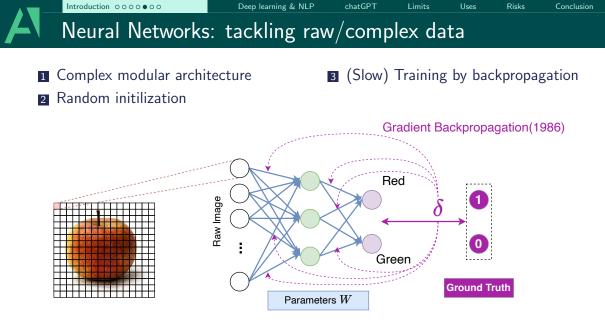


- 1 Collecting labeled dataset
- 2 Training classifier
- 3 Exploiting the model



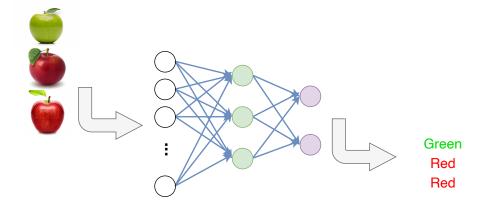
- 1 Complex modular architecture
- **2** Random initilization





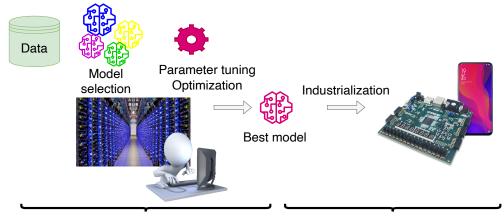
- Complex modular architecture
- 2 Random initilization

- **3** (Slow) Training by backpropagation
- 4 Faster inference



Introduction 0000000	Deep learning & NLP	chatGPT	Limits	Uses	Risks	Conclusion
Data Processing	Chain					

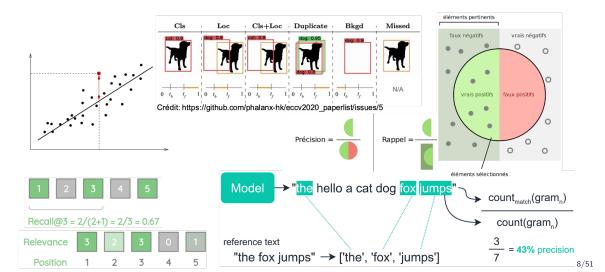
Different steps in machine-learning



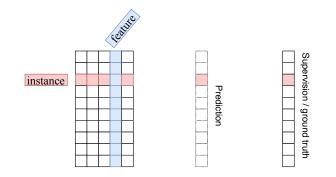
Model Training = Intensive Computing

Model exploitation = limited Computing

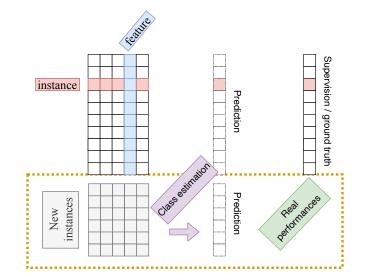
Estimating performance (in generalization)... as important as training the model!



Estimating performance (in generalization)... as important as training the model!



Estimating performance (in generalization)... as important as training the model!

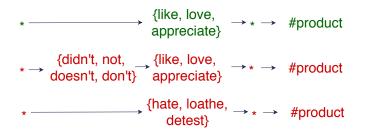


DEEP LEARNING & REPRESENTATION LEARNING [Application to textual data] AI + Textual Data: Natural Language Processing (NLP)

NLP = largest scientific community in Al

Linguistics [1960-2010]

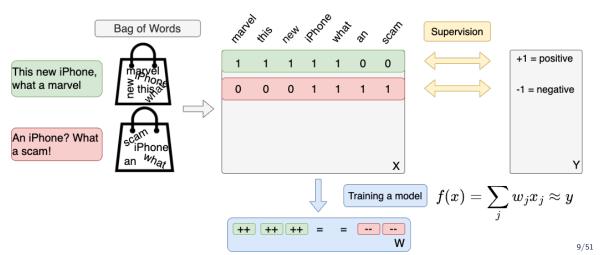
Rule-based Systems:



- Requires expert knowledge
- Rule extraction \Leftrightarrow
 - very clean data
- Very high precision
- Low recall
- Interpretable system

NLP = largest scientific community in Al

Machine Learning [1990-2015]



Introduction Deep learning & NLP • 0000000 chatGPT Limits Uses Risks Conclusion AI + Textual Data: Natural Language Processing (NLP)

NLP = largest scientific community in Al

Linguistics [1960-2010]

- Requires expert knowledge
- $\blacksquare Rule extraction \Leftrightarrow$

very clean data

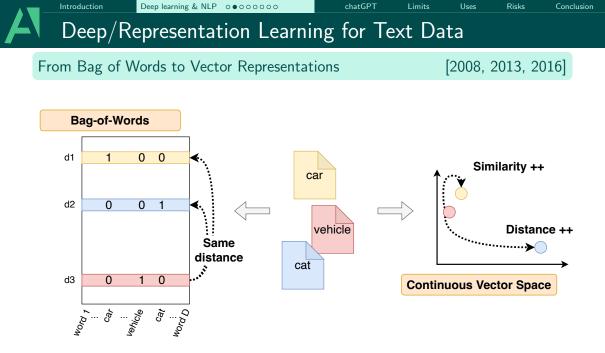
- + Interpretable system
- + Very high precision
- Low recall

Machine Learning [1990-2015]

- Little expert knowledge needed
- Statistical extraction ⇔ robust to noisy data
- pprox Less interpretable system
- Lower precision
- + Better recall

$\label{eq:Precision} {\sf Precision} = {\sf criterion} \ {\sf for} \ {\sf acceptance} \ {\sf by} \ {\sf industry}$

ightarrow Link to metrics



LeCun, Y., Bengio, Y., Hinton, G. (2015). Deep learning. Nature, 521(7553), 436-444.

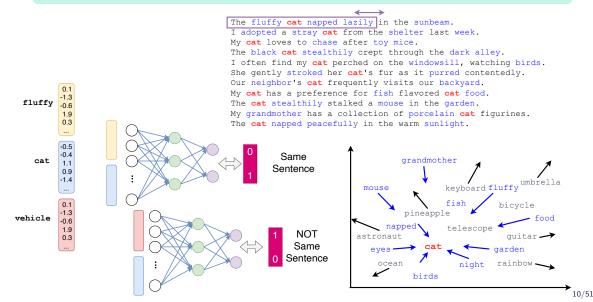
Uses

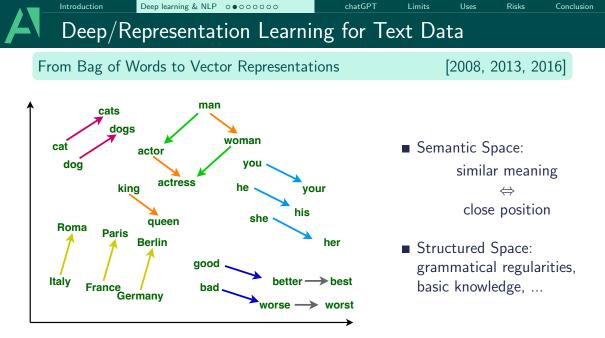
Deep/Representation Learning for Text Data

From Bag of Words to Vector Representations

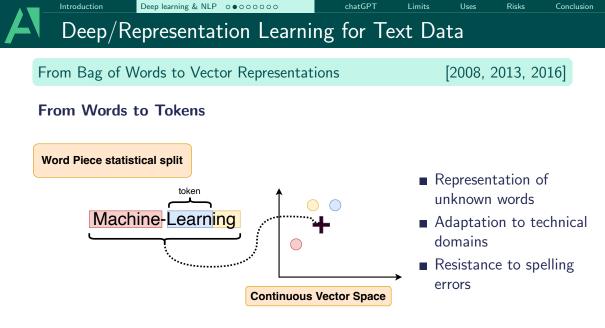
[2008, 2013, 2016]

Risks



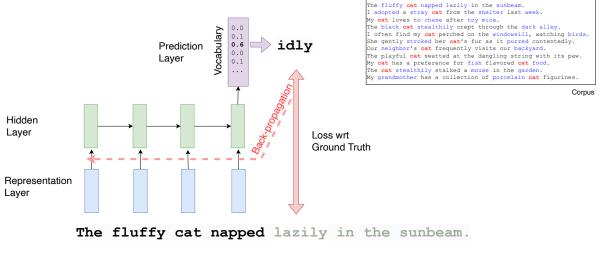


Distributed representations of words and phrases and their compositionality, Mikolov et al. NeurIPS 2013

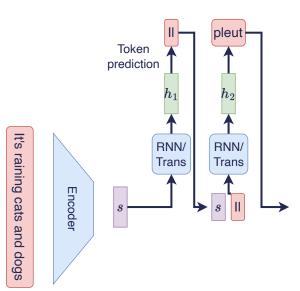


Enriching word vectors with subword information. Bojanowski et al. TACL 2017.

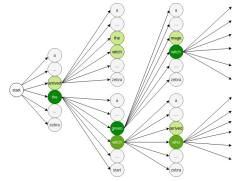
- Generation & Representation
- New way of learning word positions



Sequence to Sequence Learning with Neural Networks, Sutskever et al. NeurIPS 2014

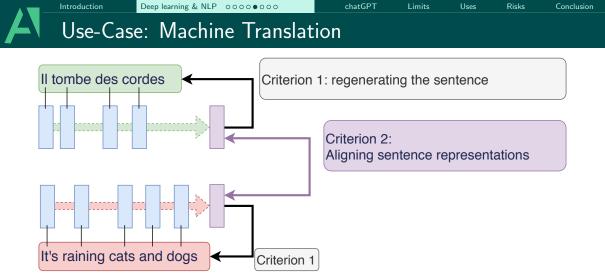


- High cost \approx 1 call / token
- Max. likelihood principle
- NLP historical task =
 - specific classif./scoring archi.
 - constraint and/or post processing on generative archi.



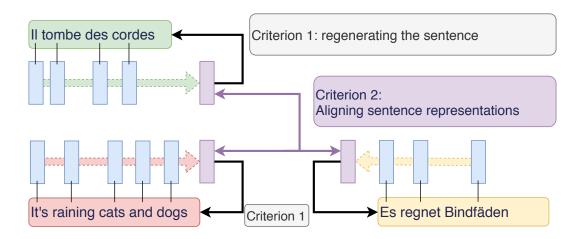
Introduction	Deep learning & NLP 000000	0	chatGPT	Limits	Uses	Risks	Conclusion
Use-Case	e: Machine Tra	Inslation					

Beyond word-for-word translation, multilingual representation of sentences

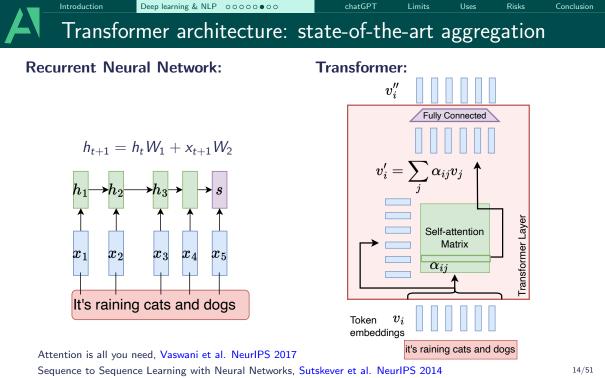


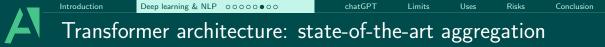
Beyond word-for-word translation, multilingual representation of sentences

Introduction Deep learning & NLP 0000000 ChatGPT Limits Uses Risks Conclusion Use-Case: Machine Translation



Beyond word-for-word translation, multilingual representation of sentences

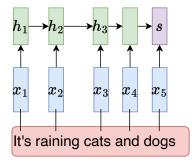


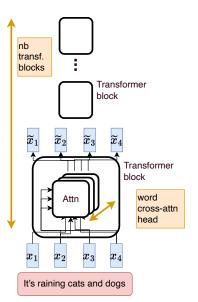


Recurrent Neural Network:

Transformer:

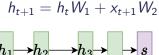
$$h_{t+1} = h_t W_1 + x_{t+1} W_2$$

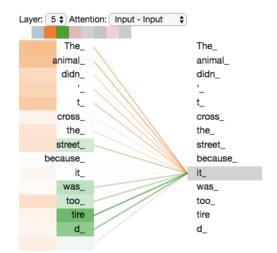


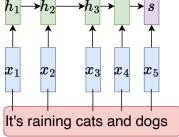




Recurrent Neural Network:

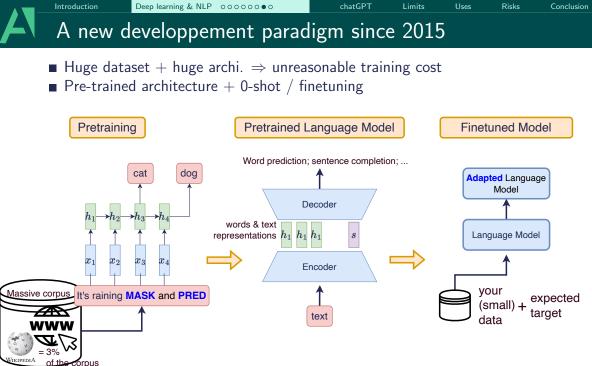




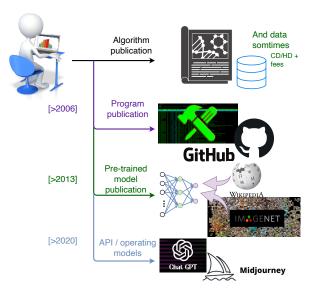


Attention is all you need, Vaswani et al. NeurIPS 2017

Sequence to Sequence Learning with Neural Networks, Sutskever et al. NeurIPS 2014



Introduction Deep learning & NLP 0000000 ChatGPT Limits Uses Risks Conclusion Evolution of Professions and Development Techniques

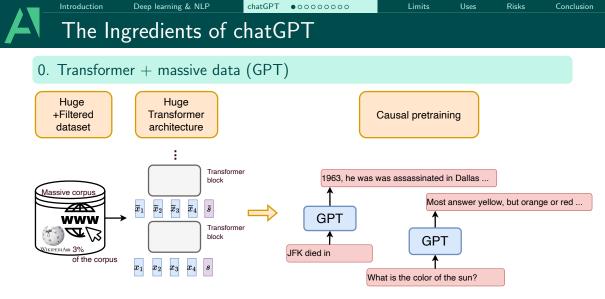


- Computer Science skills of students
 Software readiness / maturity
 - Dev. tools
 - ML librairies
 - ↗ Model availability
 - ↗ Computing power
- \Rightarrow Accessibility ++

CHATGPT

NOVEMBER 30, 2022

1 MILLION USERS IN 5 DAYS 100 MILLION BY THE END OF JANUARY 2023 1.16 BILLION BY MARCH 2023



Grammatical skills: singular/plural agreement, tense concordance
 Knowledges

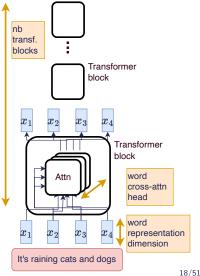
Language Models are Few-Shot Learners, Brown et al. 2020

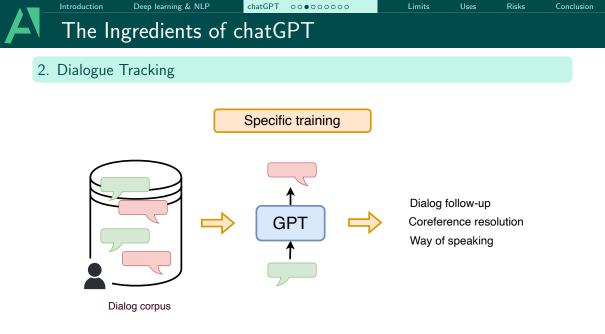
- + more dimensions in the word space $[500-2k \Rightarrow 12k]$
- + more attention heads
- + more blocks/layers

$$[12 \Rightarrow 96]$$
$$[5-12 \Rightarrow 96]$$

175 Billion parameters... What does it mean?

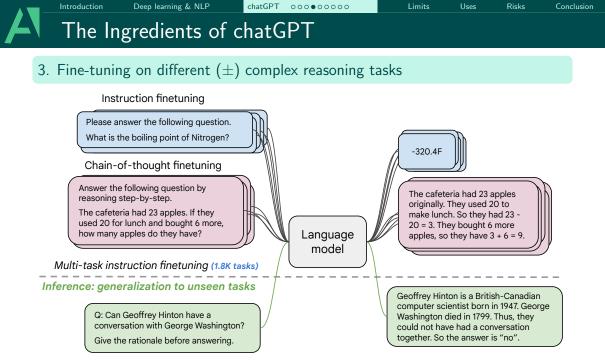
- $1.75 \cdot 10^{11} \Rightarrow 300 \text{ GB} + 100 \text{ GB}$ (data storage for inference) $\approx 400 \text{GB}$
- NVidia A100 GPU = 80GB of memory (=20k€)
- Cost for (1) training: 4.6 Million €



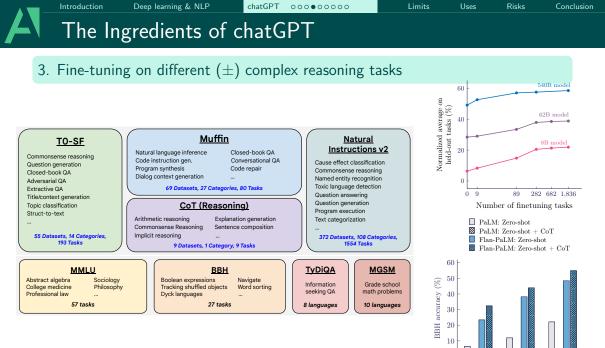


Very clean data

Data generated/validated/ranked by humans



Scaling Instruction-Finetuned Language Models, Chung et al., JMLR 2024



Scaling Instruction-Finetuned Language Models, Chung et al., JMLR 2024

 $^{540\mathrm{B}}\mathrm{20/51}$

8B

62B

Introduction Deep learning & NLP ChatGPT 00000 Limits Uses Risks Conclusion The Ingredients of chatGPT

4. Instructions + answer ranking



Database created by humansResponse improvement

 Also a way to avoid critical topics = censorship

Training language models to follow instructions with human feedback, Ouyang et al., 2022

	Introduction	Deep learning & NLP	chatGPT	000000000	Limits	Uses	Risks	Conclusion
	Usage	of chatGPT &	& Pro	ompting				

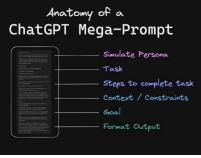
- Asking chatGPT = skill to acquire ⇒ *prompting*
 - Asking a question well: ... in detail, ... step by step
 - Specify number of elements e.g. : 3 qualities for ...
 - Provide context : *cell* for a biologist / legal assistant

Don't stop at the first question

- Detail specific points
- Redirect the research
- Dialogue

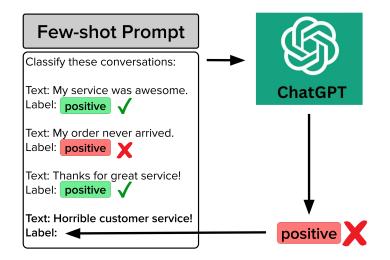
Rephrasing

- Explain like I'm 5, like a scientific article, bro style, ...
- Summarize, extend
- Add mistakes (!)
- \Rightarrow Need for practice [1 to 2 hours], discuss with colleagues



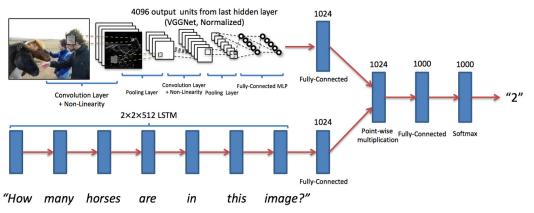
https://chatgptprompts.guru/what-makes-a-good-chatgpt-prompt

Learning without modifying the model = examples in the prompt



Merging information from text & image. Learning to exploit information jointly

The example of VQA: visual question answering



 $\Rightarrow \text{Backpropagate the error} \Rightarrow \text{modify word representations} + \text{image analysis}$

Introduction Deep learning & NLP chatGPT 00000000 Limits Uses Risks Conclusion Why So Much Controversy?

- New tool
- $\blacksquare \ + \ Unprecedented \ adoption \ speed$
- Strengths and weaknesses... Poorly understood by users
 - Significant productivity gains
 - Surprising / sometimes absurd uses
- Misinterpreted feedback
 - Anthropomorphization of the algorithm and its errors
- Prohibitive cost: what economic, ecological, and societal model?

[1M users in 5 days]

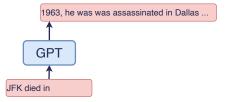
[December 2022]

MACHINE LEARNING LIMITS

Introduction Deep learning & NLP chatGPT Limits ••••• Uses Risks Conclusion chatGPT and the relationship with truth

- Plausibility = grammar, agreement, tense concordance, logical sequences...
 ⇒ Repeated knowledge
- 2 Predict the most **plausible** word... \Rightarrow produces **hallucinations**
- **3 Offline** functioning
- ▲ chatGPT ≠ knowledge graphs
- 5 Brilliant answers...

 $\label{eq:And silly mistakes!} And silly mistakes! \\ + we cannot predict the errors$



Example: producing a bibliography

Can you give me a short bibliography on VAE for Time Series?

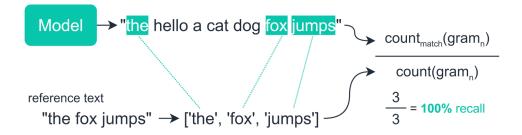
recurrents.

 "Variational Recurrent Autoencoders" par Chung et al. (2016) - Cette étude introduit une approche VAE pour la modélisation de séquences temporelles en utilisant des réseaux de neurones récurrents et une méthode de maximisation de la vraisemblance

pour la phase d'entraînement. Variational recurrent auto-encoders

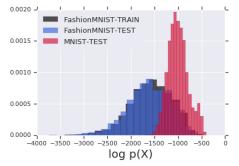
- Cenerative Modeling for Time CRAIks, RVM Anembody av/or prevent avXiv 412.5553, 214 avXiv og lim Bao et al. (2017) Cette étude : Variational Recurrent AvX-Encoder (VRAI), Such a nodel can be und for Hitten et al. (2017) Cette étude : Variational Recurrent AvX-Encoder (VRAI), Such a nodel can be und for efficient, large scale ... pour la modelisation de sériest : the preventer \$V Cetter Claid 302 for Autres antoles Les 2 ventions 1/0 profonds, y compris les VAE.
- "Deep Variational Bayes Filters: Unsupervised Learning of State Space Models from Paul Data" par Krichban et al. (2017) - Catta Auria présente une approche MAE pour la

- How to evaluate against ground truth?
- How to evaluate system confidence / plausibility of generation?



The Ultimate Performance Metric in NLP, J. Briggs, Medium 2021

- How to evaluate against ground truth?
- How to evaluate system confidence / plausibility of generation?



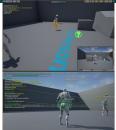
Plausibility

Do Large Language Models Know What They Don't Know?, Yin et al. , ACL, 2023

Do Deep Generative Models Know What They Don't Know?, Nalisnick et al. , ICLR, 2019

A 💶	Introduction	Deep learning & NLP	chatGPT	Limits	0000	Us	ses	Risks	Conclusion
	Stabilit	ty/predictal	oility						

- Difficult to bound a behavior
- Impossible to predict good/bad answers
- \Rightarrow Little/no use in video games

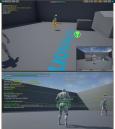


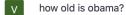
how old is Obama

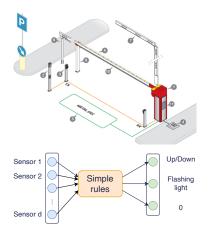
Barack Obama was born on August 4, 1961, making him 61 years old as of February 2, riangleq 2023.

A 💶	Introduction	Deep learning & NLP	chatGPT	Limits	0000	Uses	Risks	Conclusion
	Stabilit	y/predictab	oility					

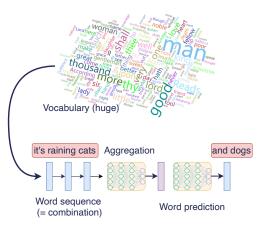
- Difficult to bound a behavior
- Impossible to predict good/bad answers
- \Rightarrow Little/no use in video games







- Simple system
- Exhaustive testing of inputs/outputs
- Predictable & explainable



- Large dimension
- Complex non-linear combinations
- Non-predictable & non-explainable

[Uber Accident, 2018]

- Simple system
- Exhaustive testing of inputs/outputs
- Predictable & explainable

- Large dimension
- Complex non-linear combinations
- Non-predictable & non-explainable

Introduction De	eep learning & NLP c	chatGPT	Limits	00000	Uses	Risks	Conclusion
A Transpare	ency						

- Model weights (*open-weight*)... \Rightarrow but not just the weights
- Training data (*BLOOM*) + distribution + instructions
- Learning techniques
- Evaluation

Foundation Model Transparency Index Scores by Major Dimensions of Transparency, 2023

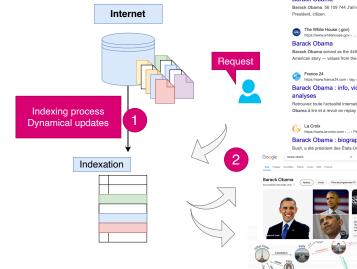
	💦 Meta	BigScience	(S) OpenAl	stability.ai	Google	ANTHROP\C	n cohere	Al21 labs	Inflection	amazon	
	Llama 2	BLOOMZ	GPT-4	Stable Diffusion	2 PaLM 2	Claude 2	Command	Jurassic-2	Inflection-1	Titan Text	Average
Data	40%	60%	20%	40%	20%	0%	20%	0%	0%	0%	20%
Labor	29%	86%	14%	14%	0%	29%	0%	0%	0%	0%	17%
Compute	57%	14%	14%	57%	14%	0%	14%	0%	0%	0%	17%
> Methods	75%	100%	50%	100%	75%	75%	0%	0%	0%	0%	48%
Model Basics	100%	100%	50%	83%	67%	67%	50%	33%	50%	33%	63%
Model Basics Model Access To Capabilities	100%	100%	67%	100%	33%	33%	67%	33%	0%	33%	57%
	60%	80%	100%	40%	80%	80%	60%	60%	40%	20%	62%
Risks Line Constructions Line Construction Solution	57%	0%	57%	14%	29%	29%	29%	29%	0%	0%	24%
E Mitigations	60%	0%	60%	0%	40%	40%	20%	0%	20%	20%	26%
.c Distribution	71%	71%	57%	71%	71%	57%	57%	43%	43%	43%	59%
≥ Usage Policy	40%	20%	80%	40%	60%	60%	40%	20%	60%	20%	44%
Feedback	33%	33%	33%	33%	33%	33%	33%	33%	33%	0%	30%
Impact	14%	14%	14%	14%	14%	0%	14%	14%	14%	0%	11%
Average	57%	52%	47%	47%	41%	39%	31%	20%	20%	13%	

Source: 2023 Foundation Model Transparency Index

https://crfm.stanford.edu/fmti/May-2024/index.html

LARGE LANGUAGE MODELS USES

0



Facebook - Barack Obama Barack Obama Barack Obama, 56 109 744 J'aime - 151 660 en parlent, Dad, husband, former

Θ 56 M+ followers

https://www.whitehouse.gov > ... > Presidents

Barack Obama served as the 44th President of the United States. His story is the American story - values from the heartland, a middle-class upbringing in a ...

https://www.france24.com > tag > barack-obama

Barack Obama : info, vidéos, reportages et

Retrouvez toute l'actualité internationale et les décryptages Barack Obama à lire et à revoir en replay sur France 24.

Cy La Croix https://www.la-croix.com > ... > Personnalité politique

Barack Obama : biographie, actus et infos sur cet ancien ...

Bush, a été président des États-Unis de janvier 2009 à janvier 2017, avant les × 🔅 ۹ Outle

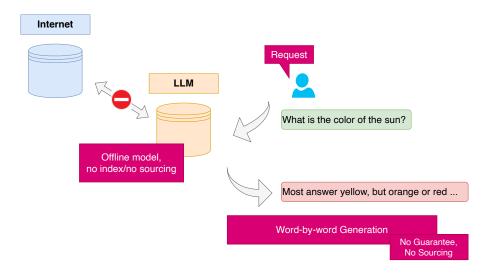
V ini a

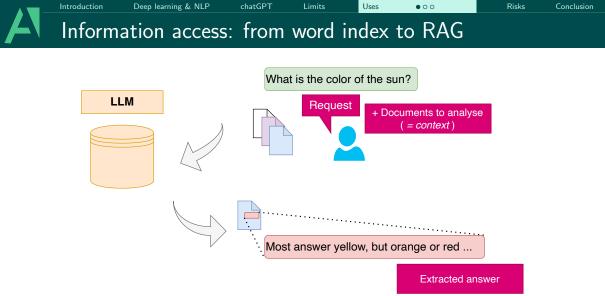
Michelle Robinson.

Sourced Results

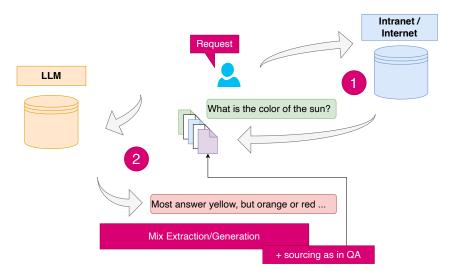
But is it reasonnable?

[Real Open Question (!)]

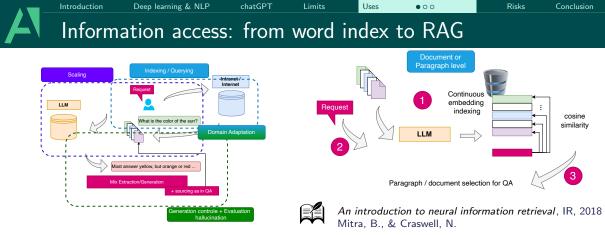




- Web query + analysis, automatic summary, rephrasing, meeting reports...
- (Current) limit on input size (2k then 32k tokens)
- = pre chatGPT use of LLM for question answering



- RAG: Retrieval Augmented Generation
- (Current) limit on input size (2k then 32k tokens)



1 Specific indexing process, relying on (L)Language Model

Lewis et al (2020) Retrieval-Augmented Generation for Knowledge-Intensive NLP Tasks

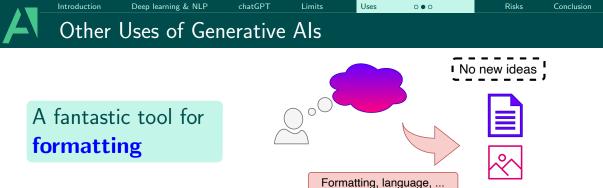
2 Very large context given to the LLM

Borgeaud et al (2022) Improving Language Models by Retrieving from Trillions of Tokens

3 Generation controle: hallucination

LeBronnec et al. 2024, SCOPE: A Preference Fine-tuning Framework for Faithful Data-to-text

4 Domain Adaptation (Biology, Medecine, Technical field...)

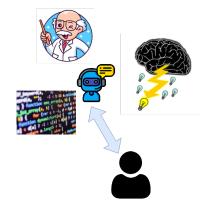


- Personal assistant
 - Standard letters, recommendation letters, cover letters, termination letters
 - Translations
- Meeting reports
 - Formatting notes
- Writing scientific articles
 - Writing ideas, in French, in English
- Document analysis
 - Information extraction, question-answering, ...

Introduction Deep learning & NLP chatGPT Limits Uses ••• Risks Conclusion Other Uses of Generative Als

And a tool for **reflection**!

- Brainstorming
 - Argument development, contradiction search
- Assistant for software development
 - Code generation, error search, ...
 - Documentation
- Educational assistant
 - Wikipedia ++, proposal of outlines for essays,
 - Code explanation / correction proposals



Introduction Deep learning & NLP chatGPT Limits Uses 000 Risks Conclusion LLM & Teaching opportunities

- A great opportunity to have a 24/7 available teacher
- In particular for coding:
 - Learning python
 - Learning machine learning
- \Rightarrow **1** Generate a small program
 - 2 Ask question about the different functions

LLM can do your homeworks... But LLM can explain you, answer questions about the solution, teach you!

(MAIN) RISKS DERIVED FROM ML & LLM

Typology of Al Risks in NLP (L. Weidinger)

Discrimination, exclusion and toxicity

Harms that arise from the language model producing discriminatory and exclusionary speech.

Information hazards

Harms that arise from the language model leaking or inferring true sensitive information.

Misinformation harms

Harms that arise from the language model producing false or misleading information.

Malicious uses

Harms that arise from actors using the language model to intentionally cause harm.

Human-computer interaction harms

Harms that arise from users overly trusting the language model, or treating it as human-like.

Automation, access and environmental harms

Harms that arise from environmental or downstream economic impacts of the language model.

Introduction Deep learning & NLP chatGPT Limits Uses Risks 0 000000000 Conclusion Access to Information

Access to dangerous/forbidden information

- \blacksquare +Personal data
- Right to digital oblivion
- Information authorities
 - $\blacksquare \text{ Nature: unconsciously, image} = \text{truth}$
 - Source: newspapers, social media, ...
 - Volume: number of variants, citations (pagerank)
- Text generation: harassment...
- Risk of anthropomorphizing the algorithm
 - Distinguishing human from machine

Mustache, Triangular Ears, Fur Texture

Cat

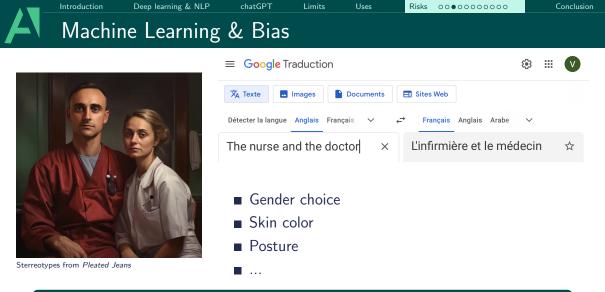
Over 40 years old, white, clean-shaven, suit

Senior Executive

Bias in the data \Rightarrow bias in the responses

Machine learning is based on extracting statistical biases...

 \Rightarrow Fighting bias = manually adjusting the algorithm $_{_{36/51}}$



Bias in the data \Rightarrow bias in the responses

Machine learning is based on extracting statistical biases...

 \Rightarrow Fighting bias = manually adjusting the algorithm

- Ø
- PLATE ?
- FAIRNESS

Bias Correction:

Introduction

■ Selection of specific data, rebalancing

Deep learning & NLP

Bias Correction & Editorial Line

chatGPT

I imits

- Censorship of certain information
- Censorship of algorithm results

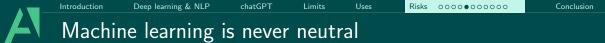
 \Rightarrow Editorial work...

- Domain experts / specifications
- Engineers, during algorithm design
- Ethics group, during result validation
- Communication group / user response
- \Rightarrow What legitimacy? What transparency? What effectiveness?

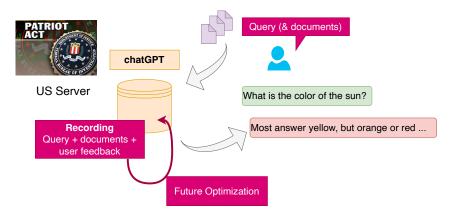
Done by whom?

Uses

Risks

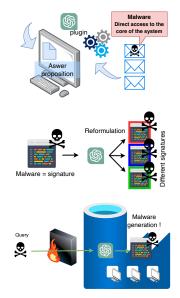


- 1 Data selection
 - Sources, balance, filtering
- 2 Data transformation
 - Information selection, combination
- 3 Prior knowledge
 - Balance, loss, a priori, operator choices...
- 4 Output filtering
 - Post processing
- \Rightarrow Choices that influence algorithm results



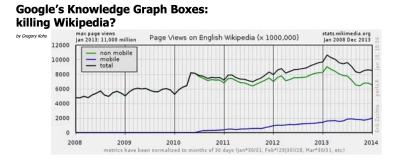
- Transfer of sensitive data
- Exploitation of data by OpenAI (or others)
- Data leakage in future models

- Plug-ins ⇒ Often significant security vulnerabilities for users
 - Email access / transfer of sensitive information etc...
- Management issues for companies
 - Securing (very) large files
- Increased opportunities for malware signatures
 - $\blacksquare \ \approx \ {\rm software} \ {\rm rephrasing}$
- New problems!
 - Direct malware generation

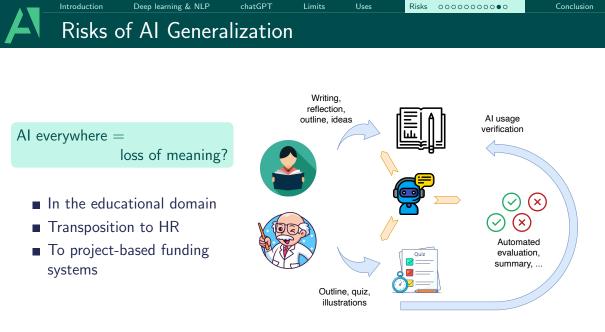


Introduction Deep learning & NLP chatGPT Limits Uses Risks 00000000000 Conclusion Economic Questions

- \blacksquare Funding/Advertising \Leftrightarrow **visits** by internet users
- Google knowledge graph (2012) \Rightarrow fewer visits, less revenue
- chatGPT = encoding web information... \Rightarrow much fewer visits?
- \Rightarrow What **business model for information sources** with chatGPT?



⇒ Who does **benefit from the feedback**? [StackOverFlow]



Medicine

- **Autonomy:** the patient must be able to make informed decisions.
- **2 Beneficence:** obligation to do good, in the interest of patients.
- **3** Non-maleficence: avoid causing harm, assess risks and benefits.
- **4 Justice:** fairness in the distribution of health resources and care.
- **5 Confidentiality:** confidentiality of patient information.
- **Truth and transparency:** provide honest, complete, and understandable information.
- **Informed consent:** obtain the free and informed consent of patients.
- **B** Respect for human dignity: treat all patients with respect and dignity.

Artificial Intelligence

- **1** Autonomy: Humans control the process
- 2 Beneficence: including the environment?
- 3 Non-maleficence: Humans + environment / sustainability / malicious uses
- 4 Justice: access to AI and equal opportunities
- 5 **Confidentiality:** what about the Google/Facebook business model?
- 6 Truth and transparency: the tragedy of modern Al
- 7 Informed consent: from cookies to algorithms, knowing when interacting with an AI
- **B** Respect for human dignity:

Medicine

- **Autonomy:** the patient must be able to make informed decisions.
- **2 Beneficence:** obligation to do good, in the interest of patients.
- **3** Non-maleficence: avoid causing harm, assess risks and benefits.
- **Justice:** fairness in the distribution of health resources and care.
- **5 Confidentiality:** confidentiality of patient information.
- **Truth and transparency:** provide honest, complete, and understandable information.
- **Informed consent:** obtain the free and informed consent of patients.
- **B** Respect for human dignity: treat all patients with respect and dignity.

Artificial Intelligence

- **1** Autonomy: Humans control the process
- 2 Beneficence: including the environment?
- 3 Non-maleficence: Humans + environment / sustainability / malicious uses
- 4 Justice: access to AI and equal opportunities
- 5 **Confidentiality:** what about the Google/Facebook business model?
- 6 Truth and transparency: the tragedy of modern AI
- 7 Informed consent: from cookies to algorithms, knowing when interacting with an AI
- **B** Respect for human dignity:

CONCLUSION

New tools:

- New ways to handle existing problems
- Address new problems
- ... But obviously, it doesn't always work!
- Al often makes mistakes (assistant vs replacement)

Learning to use an AI system

- Al not suited for many problems
- AI = part of the problem (+interface, usage, acceptance...)

Introduction Deep learning & NLP chatGPT Limits Uses Risks Conclusion 000000 Maturity of Tools & Environments

(More) mature tools

- **Environments**: Jupyter, Visual Studio Code, ...
- Machine Learning Scikit-Learn: blocks to assemble
 - Training: 1 week
 - Project completion: few hours to few days
- Deep Learning pytorch, tensorflow: building blocks... but more complex
 - Training: 2-5 weeks
 - Project completion: few days to few months
 - Mandatory for text and image
- \blacksquare A data project = 10 or 100 times less time / 2005

Developing a project is accessible to non-computer scientists

Levels of Access to Artificial Intelligence

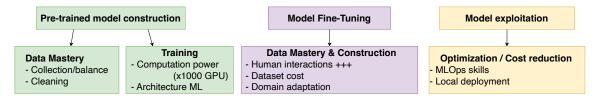
1 User via an interface: *chatGPT*

■ WARNING: some training is still required (2-4h)

2 Using Python libraries

- Basics on protocols
- Standard processing chains
- Training: 1 week-3 months (ML/DL)
- 3 Tool developer
 - Adapt tools to a specific case
 - Integrate business constraints
 - Build hybrid systems (mechanistic/symbolic)
 - Mix text and images
 - Training: ≥ 1 year

Introduction Deep learning & NLP chatGPT Limits Uses Risks Conclusion 0000000 Digital Sovereignty: the Entire Chain



Introduction Deep learning & NLP chatGPT Limits Uses Risks Conclusion 0000000 A Multitude of Professions ••• Data architect / manager • Data management & hardware devices (storage, network, ...) Data Engineer · Update & Query on the data + DPO : Data Protection Officer Data Analyst Data visualization (chart, indicators, ...) Statistical trends **Prompt Engineer** · Query on LM/foundation models with "prompts" Data Scientist · Query the data / critical selection & balance · Algorithm development / adaptation / evaluation Advanced data visualization **MLOps Engineer**

Algorithm optimization
Industrialize software solutions

1 Utilitarianism:

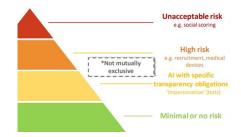
- Performance (acceptance factor of chatGPT)
- Reliability / Self-assessment

2 Non-dangerousness:

- Bias / Correction
- Transparency (editorial line, human/machine confusion)
- Reliable Implementation
- Sovereignty (?)
- Regulation (Al act)
 - Avoid dangerous applications

3 Know-how:

Training (usage/development)



Deep learning & NLP chatGPT Risks Introduction Limits Uses Conclusion 000000 chatGPT: A Simple Step Training & Tuning Costs 4-5 Million Euros / training \Rightarrow chatGPT is **poorly trained**! Data Efficiency chatGPT > 1000x a human's lifetime reading Identify Entities, Cite Sources Anchoring responses in knowledge bases

Sam Altman 🤗 @sama

ChatGPT launched on wednesday. today it crossed 1 million users!

8:35 AM · Dec 5, 2022

3,457 Retweets 573 Quote Tweets 52.8K Likes

- Anchoring responses in sources
 - Multiplication of initiatives: GPT, LaMBDA, PaLM, BARD, BLOOM, Gopher, Megatron, OPT, Ernie, Galactica...
 - Public involvement,

impact on information ${\rm access}_{51/51}$