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chatGPT Limits i Conclusion

Introduction @ 0000 Deep-Learning

A quick historical tour of Artificial Intelligence

Birth of Computer Science... And of Artificial Intelligence

1956 Dartmouth Conference:
The Founding Fathers of AI

John MacCarthy Marvin Minsky Claude Shan Hay Solomonoff Alan Newell

. Automated E. Dickmanns :

,! ;;. "
ﬂ y ' cheque reading 1000km in
( autonomous vehicle
%‘amm
Nothaniel Fachester  Trenchard More
A.Turing  Dartmouth
conference !
First creation of IA G Hinton
computer DARPA Backpropagation
| W ‘ IBM Deeper Blue
‘ 1941 1950 1956 1958 1963 1965 1972 1979 1986 1987 1990 1992 1993 1994 1997 ‘
Dynamic LISP Language PROLOG 1st hLural ’_‘ J L CTJ,
: DARPA .
programming Perceptron Network ’\DA/l\JIgPA TREG SVM Decision Tree
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A quick historical tour of Artificial Intelligence

Emergence (or Reinvention) of GAFAM/GAMMA
<777
MosBIEYE®
Yaxioo! E
3azon Google ;
l1994 1995 1997 1998 1999 2001 2002 2004 2005 2006 2007 l
e \

NETFLIX
3 YouTube
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A quick historical tour of Artificial Intelligence

Emergence (or Reinvention) of GAFAM/GAMMA

Opinion Ieader detection

RN ’1,1'
<777 M“ _

Mosreve’ "'
YAaHOO! Pang & Lee - 3
amazon Go gle Seasifienton Netlx Pize
) {
l 1994 1995 1997 1998 1999 2001 2002 20|04 2005 20|06 20’;’]

I | |

e DARPA R 4
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CeLQ elgy

Recommender System
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A quick historical tour of Artificial Intelligence

Formation of a Wave of Artificial Intelligence

Hinton/Krizhevsky

? Go gle.. ‘

© KnowedoeGraph A Deep-Learning

A b a‘z O AlphaGo
( W - o8
Thrun: )
DARPA Gd Challenge . K. Cho @ CERCEE

i Translate (v2
victory Traduction auto. v2)

— l

‘ 2005 2007 2008 2009 2010 2011 2012 2014 2015 2016 2017 2020 2023 ‘

amazon alexa

© OpenAl

b Google  <szpp
\
DeepMind MOBILEYVE

Acquisition : $400M An(inteD) company

Acquisition :
$15B

= Jeopardy win 2/62
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o Input (X) Output (Y) Application
-~ Digital
/// \\ email ———> gpam? (0/1) spam filtering
/ \\\
/ o audio ——> text transeript speech recognition
l Machinzz-ilt_aéaming : English > Chinese machine translation
\ DeepL. / ad, user info > click? (0/1) online advertising
\ Neural Net.
\\ image, radar info —= position of other cars self-driving car
o image of phone —> defect? (0/1) visual inspection
Al: computer programs that engage in N-Al (Narrow Artificial
tasks which, for now, are more Intelligence), dedicated to a single
satisfactorily performed by humans task
because they require high-level mental # G-Al (General Al), which replaces
processes. humans in complex systems.
Marvin Lee Minsky, 1956 Andrew Ng, 2015
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Supervised Processing Chain & Models

Dataset

-

/
v :(> Green Inference

\ 4

, | lassiter
v 1

Green Red

)

Y o

ny)
()
Q

?

/
<
&

\ Supervision

m Promise = building a model solely from observations
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Supervised Processing Chain & Models

\‘b&?}
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: -~ f(oro) = pred
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L
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Features  Supervision
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Deep-Learning chatGPT

Introduction oo e oo

Supervised Processing Chain & Models

Naive Bayes Model

! T )
hidden layers .

—_— - Margin
= ain

.
S i s °. - input ]
.\mmun /‘_ Separating

7 // 1 1 / Hyperplane

.

S . ‘-b '\‘ Target=Yes
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Supervised Processing Chain & Models

Raw Image

Parameters W ‘

m Random initialization... And random decision-making (at first!)
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Supervised Processing Chain & Models

RawImage ©

m Updating the weights
m Epsilon-sized steps, many iterations over the data
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Supervised Processing Chain & Models

" o

:
LT .

m Training is slow and costly

m Inference is (much) faster
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Supervised Processing Chain & Models

Différentes étapes en machine-learning

- & o

Model Parameter tuning
selection Optimization Industrialization
& 5 <§§1§E¥

Best model

(% J U J
L g L g

Model Training = Intensive Computing Model exploitation = limited Computing
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Estimating performance (in generalization)...
Is just as important as training the model itself!

éléments pertinents
Cls i Loc + Cls+Loc « Duplicate © Bkgd  Missed

i : ¥ ¥ y faux négatifs vrais négatifs
| 1 [ [ |
| ' | | |
| ' | | '
| 1 | | '
| 1 L el | |
) ' ' '
| [ '
|

)t

[ i N/A
04 & 1,04 & LO04 & LO0O4 L L04 ot 1 vrais positifs  faux positifs
Crédit: https:}‘/github.confphalanx—hk/éccv2020 Jaberlisvissues'/S
Précision = ——— Rappel =——

éléments sélectionnés
popEoE B mreccccmmE-l L, gm,

E“g ;* sf count(gram,)
I:' D I:‘ I:‘ l:‘ reference text i = 43% precision
"the fox jumps” —>[the' 'fOX jumps’] 7
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Measuring Performance

Estimating performance (in generalization)...
Is just as important as training the model itself!

[instance]

uonoIpeid

yindy punoif / uoisinledng
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Measuring Performance

Estimating performance (in generalization)...
Is just as important as training the model itself!
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Ingredients of Artificial Intelligence

Sensors
o I amazon
P WUT webservices
~Jupyter y . .- v .
ot pgthon 7 goftware | Storage & ICroso

“ Computing | Il Azure

<SANVIDIA.
™ CUDA
Tensor Spaﬂ( O Models o 3 GOOg|e Cloud
GitHub (2

O PyTorci Z ¥ HuggingFace  NVIDIA.
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/=\  From tabular data to text

- Tabular data é
- Fixed dimension - 4~ f( O ) = pred

- Continuous values

- Textual data this new iPhone, what a marvel
- Variable |ength {An iPhone? What a scam!
- Discrete values ( )
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Al + Textual Data: Natural Language Processing (NLP)

NLP = largest scientific community in Al
Linguistics [1960-2010]
Rule-based Systems:

{like, love,

. R _ —+ > #product m Requires expert knowledge
appreciate} m Rule extraction <
L df)dlgn't’ ggt,'t}H {like, Igv?,} —+ — #product | ve.r)-/ clean data
esnt, donty appreciate m Very high precision
X {haétzt;c;?;he, —++ > #product m Low recall
m Interpretable system
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A‘ Al + Textual Data: Natural Language Processing (NLP)

NLP = largest scientific community in Al

Machine Learning [1990-2015]

. ) > @
Bag of Words N S & -
I. g J (Q."Zr & @ _\‘C‘ RS é;i':r Supervision
1 1 1 1 1 0 0 S[periiee
This new iPhone, g%b _
what a marvel ‘wthlg.} 0 0 0 1 1 1 1 -1 = negative
f\\‘
I
An iPhone? What | [ c&®
a scam! 'PRPnB
) an Vhgy, X Y
‘ ‘ |Tra|n|ngamode|| f E w;T ;A Y
+=+] [+ ][+=+]) = = [=][=
w
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Al + Textual Data: Natural Language Processing (NLP)

NLP = largest scientific community in Al

Linguistics [1960-2010] Machine Learning [1990-2015]
m Requires expert knowledge m Little expert knowledge needed
m Rule extraction < m Statistical extraction <
very clean data robust to noisy data
+ Interpretable system ~ Less interpretable system
-+ Very high precision — Lower precision
— Low recall + Better recall

Precision = criterion for acceptance by industry

— Link to metrics
8/62
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Deep/Representation Learning for Text Data
2008, 2013, 2016]

From Bag of Words to Vector Representations

Bag-of-Words

d1 1 [ 0] .
“ 5 car Similarity ++
4
a2 001 <} <:| N :> D
Distance ++
Same [\ | | Tt
distance k >O R
3 cat ' >
d3 0 1.0 * Continuous Vector Space
~ S @ *~ Q
> & 3 & N
£ & 8
LeCun, Y., Bengio, Y., Hinton, G. (2015). Deep learning. Nature, 521(7553), 436-444. o/62
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From Bag of Words to Vector Representations [2008, 2013, 2016]

s —
|The fluffy cat napped lazily|in the sunbeam.
I adopted a stray cat from the shelter last week.
My cat loves to chase after toy mice.
The black cat stealthily crept through the dark alley.
I often find my cat perched on the windowsill, watching birds.
She gently stroked her cat's fur as it purred contentedly.
Our neighbor's cat frequently visits our backyard.

_?; My cat has a preference for fish flavored cat food.
fluffy g The cat stealthily stalked a mouse in the garden.
1.9 My grandmother has a collection of porcelain cat figurines.
03 The cat napped peacefully in the warm sunlight.
'g-i ) O 0 A
cat |44 - <)::> Same grandmother
0.9 . 1 Sentence l
1.4 - ) mbrella
_ mouse keyboard fluffyu *
0.1 \ \ fish / bicycle
. -1.3 pineapple
vehicle 06 = food
1.9 . ‘\\\\ napped telescope "”’—
03 B C) 1 NOT astronaut guitar —¥»
) <:::> Same eyes —» cat ‘\<\ garden
= . ) Ol Sentence Yo : .
H - W ocean night rainbow
: J / ~
- birds

>
- 9/62
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Limits Conclusion

Deep/Representation Learning for Text Data

From Bag of Words to Vector Representations

man
cats

/ dogs / \
caf / woman

actor

dog \ / you\

King actress he \ your
his
queen she
Roma Paris .
Berlin her
good \
Italy better —>» best
France bad
Germany ~

worse —» worst

3

>

[2008, 2013, 2016]

m Semantic Space:

similar meanings
=
close positions

m Structured Space:
grammatical regularities,
basic knowledge, ...

Distributed representations of words and phrases and their compositionality, Mikolov et al. NeurlPS 2013
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Deep/Representation Learning for Text Data

From Bag of Words to Vector Representations [2008, 2013, 2016]

From Words to Tokens

Word Piece statistical split
m Representation of

token
—— o unknown words
'Machine-Learning .~ o4 m Adaptation to technical
b T ? ® domains
PR : m Resistance to spelling
' errors

Continuous Vector Space

Enriching word vectors with subword information. Bojanowski et al. TACL 2017.
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Introduction Deep-Learning 000000

Aggregating word representations: towards generative Al

m Generation & Representation
m New way of learning word positions

The fluffy cat napped lazily in the sunbeam.
I adopted a stray cat from the shelter last week.

My cat loves to chase after toy mice.

The black cat stealthily crept through the dark alley.

>
‘“-j I often find my cat perched on the windowsill, watching birds.
- = - She gently stroked her cat's fur as it purred contentedly.
Prediction = ::> ldly Our neighbor's cat frequently visits our backyard.
La er [+ The playful cat swatted at the dangling string with its paw.
Y/ 8 My cat has a preference for fish flavored cat food.
>

The cat stealthily stalked a mouse in the garden.

VRN My grandmother has a collection of porcelain cat figurines.
\OQ Corpus
<
@
&
; Q
Hidden 9
Q
Layer ¥ Loss wrt
o Ground Truth
4 A @
Representation
Layer

vV
The fluffy cat napped

Sequence to Sequence Learning with Neural Networks, Sutskever et al. NeurlPS 2014 10/62
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Use-Case: Machine Translation

Il tombe des cordes €— LCriterion 1: regenerating the sentence J

D_

Beyond word-for-word translation, multilingual representation of sentences
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Use-Case: Machine Translation

N
Il tombe des cordes €— LCriterion 1: regenerating the sentence
J
| [« |Criterion 2:
o Aligning sentence representations
J

] L |
{It's raining cats and dogs ]( @

Beyond word-for-word translation, multilingual representation of sentences
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Use-Case: Machine Translation

-
Il tombe des cordes €— LCriterion 1: regenerating the sentence
J
D(; Criterion 2:
Aligning sentence representations
N J

-

It s raining cats and dogs 3 Es regnet Bindfaden

Beyond word-for-word translation, multilingual representation of sentences

11/62
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Transformer architecture: state-of-the-art aggregation

Recurrent Neural Network: Transformer:
o I

s = B + 5 W i

— vi =) @i
h1—ho—>h3—> —is J
—
I — 5
1 | Self-attention E
—> Matrix >
3 5 — £
— Lij B
T 4
——— F
’Its rammg cats and dogs ‘
wen v ][] ]]]]]
embeddlngs

Attention is all you need, Vaswani et al. NeurlPS 2017 ’Its eI dOQS‘

Sequence to Sequence Learning with Neural Networks, Sutskever et al. NeurlPS 2014 12/62
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Transformer architecture: state-of-the-art aggregation

Recurrent Neural Network: Transformer:
S
nb
transf. | ——
blocks H
ht+1 = ht Wl t Xet1 W2 —\ Transformer
block

h1—>hos—>h3—> —s

I Transformer
block
L1 L2 T3 X4 &5
word
T cross-attn
| | | | head

’It's raining cats and dogs ‘

[ It's raining cats and dogs J

Attention is all you need, Vaswani et al. NeurlPS 2017 12/62
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Transformer architecture:

Recurrent Neural Network:

hey1 = heWi + x 1 Wh

hi1—ho—>h3—> —>s

1111

‘Its raining cats and dogs 1

8

Attention is all you need, Vaswani et al. NeurlPS 2017
Sequence to Sequence Learning with Neural Networks,

chatGPT

Conclusion

state-of-the-art aggregation

Transformer:

Layer:| 5 § Attention:

The_
animal_
didn_

t
Cross_
the_
street_
because_
it_

was,

too_

d

Sutskever et al. NeurlPS 2014

The_
animal_
didn_

t

Cross_
the_
street_
because_
it_

was_
too_

tire
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A new developpement paradigm since 2015

m Huge dataset + huge archi. = unreasonable training cost
m Pre-trained architecture + O-shot / finetuning

Pretraining Pretrained Language Model Finetuned Model

Word prediction; sentence completion; ...

m T Adapted Language
Model

Decoder
hi—ho—>hs—>hy
words & text
representations ki hi hq H Language Model
Encoder
assive corpus | |t's raining MASK and PRED expected
A target
WWW
EER A ARS
Y
IKIPEDIA OerS

13/62



CHATGPT
NOVEMBER 30, 2022

1 MILLION USERS IN 5 DAYS
100 MILLION BY THE END OF JANUARY 2023
1.16 BILLION BY MARCH 2023



Conclusion

Deep-Learning chatGPT €00000000000 Limits

Introduction

The Ingredients of chatGPT

0. Transformer + massive data (GPT)

Huge Huge
+Filtered Transformer Causal pretraining
dataset architecture
Transformer
block [1 963, he was was assassinated in Dallas ... }
@ [Most answer yellow, but orange or red ... }
1 3 L4
Transformer
block
- GPT
KirEDIA= 3%
of the corpus
ZR2R200
[What is the color of the sun? }

m Grammatical skills: singular/plural agreement, tense concordance
m Knowledges

Language Models are Few-Shot Learners, Brown et al. 2020 14/62
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Limits Conclusion

The Ingredients of chatGPT

1. More is better! (GPT)

+ more input words [500 = 2k, 32k, 100K]
+ more dimensions in the word space [500-2k = 12K]|
+ more attention heads [12 = 96]
+ more blocks/layers [5-12 = 96]

175 Billion parameters... What does it mean?

m 1.75- 10! = 300 GB + 100 GB (data storage for
inference) ~ 400GB

m NVidia A100 GPU = 80GB of memory (=20k€)
m Cost for (1) training: 4.6 Million €

nb
transf.
blocks

Transformer
block

Transformer
block

word
cross-attn
head

word
representation
dimension

[ It's raining cats and dogs }

15/62
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The Ingredients of chatGPT

2. Dialogue Tracking

Specific training

/
_/ .
Dialog follow-up
GPT Coreference resolution
Way of speaking
o ‘/ﬁ
A

Dialog corpus

m Very clean data Data generated/validated /ranked by humans

16/62



Introduction Deep-Learning chatGPT 00000000000 Limits Conclusion

The Ingredients of chatGPT

3. Fine-tuning on different (£) complex reasoning tasks

Instruction finetuning

Please answer the following question.
What is the boiling point of Nitrogen?

A

Chain-of-thought finetuning

Answer the following question by
reasoning step-by-step.

The cafeteria had 23 apples. If they
used 20 for lunch and bought 6 more,
how many apples do they have?

The cafeteria had 23 apples
originally. They used 20 to
Z make lunch. So they had 23 -

/ 20 = 3. They bought 6 more
apples, so they have 3 + 6 = 9.

Language
model

Multi-task instruction finetuning (1.8K tasks)

Inference: generalization to unseen tasks
Geoffrey Hinton is a British-Canadian

computer scientist born in 1947. George
Washington died in 1799. Thus, they
could not have had a conversation
together. So the answer is “no”.

Q: Can Geoffrey Hinton have a
conversation with George Washington?

Give the rationale before answering.

Scaling Instruction-Finetuned Language Models, Chung et al., JMLR 2024 17/62
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The Ingredients of chatGPT

Instructions + answer ranking

Limits

Conclusion

g

|l A1
ol I < - m

prediction 1 A3

Score :
A1l 10 ! A10
1
A1l 1 .
A2 n ' Multiple Scoring
A2 i
e + : generation
A3 1
A10 : Reinforcement
. e 1 A learning
- A10 1 1
1
1
\
Chat GPT
m Database created by humans m ... Also a way to avoid critical
m Response improvement topics = censorship

Training language models to follow instructions with human feedback, Ouyang et al.,

2022

18/62



Introduction Deep-Learning chatGPT 00000000000 Limits

Conclusion

Steps & Performance

Win rate against SFT 175B

0.6

Massive data = HQ data (dialogue) = Tasks = RLHF
STEP 3: Guide the model
with reinforcement

\

STEP 1: Fine tuning on
high quality data
Mode
=o— PPO-ptx

PPO
»— SFT

GPT (prompted)
GPT

N
STEP 0: Train on large
amount of data (world
1.3B . 6 ‘ — 1758 knowledge)
Model size

19/62
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A‘ Usage of chatGPT & Prompting

m Asking chatGPT = skill to acquire = prompting

m Asking a question well: ... in detail, ... step by step

m Specify number of elements e.g. : 3 qualities for ... Anotoms of o

m Provide context : cell for a biologist / legal assistant ChatGPT MZga—Prompt
m Don't stop at the first question (o 1 Swuote Persoma

m Detail specific points i

m Redirect the research
m Dialogue

Crm\n‘e'tﬁ task

m Rephrasing

m Explain like I'm 5, like a scientific article, bro style, ... ~ Mes#/ehatoprompis.guniihatmakesa-good-chatgptpromey
m Summarize, extend
m Add mistakes (!)

= Need for practice [1 to 2 hours|, discuss with colleagues

20/62
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Towards few-shot learning

m Learning without modifying the model = examples in the prompt

Few-shot Prompt
(Classify these conversations: | =
Text: My service was awesome.
Label: | positive \/

Text: My order never arrived.
Label: [ positive. )(

Text: Thanks for great service!
Label: | positive

Text: Horrible customer service!

Label: <= x

S J

21/62
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GPT4 & Multimodality

Merging information from text & image. Learning to exploit information jointly

The example of VQA: visual question answering

4096 output units from last hidden layer 1024
(VGGNet, Normalized)

1000

1024 1000

" = Fully-Connected
Convolution Layer Fully-Connected MLP
Pooling Layer  + Non-Linearity Pooling Layer

Convolution Layer
+ Non-Linearity

uzn
2X2X512 LSTM

.
I ‘I ‘I ‘I |
> > > >
Fully-Connected

“How many horses are in this image?”

1024

Pﬂif‘ti‘”isle Fully-Connected Softmax
multiplication

= Backpropagate the error = modify word representations + image analysis
VQA: Visual Question Answering, arXiv, 2016 , A. Agrawal et al.
22/62
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Towards Larger Foundation Models?

m Let the modalities enrich each other

Tasks
R Question 9
% Answering ° .

Data & Sentiment
[ K ’ Analysis

vl a ~)
Text
‘l’ I

&

r‘y Images %

Information V\‘

[
m Extraction

L . Adaptation
Speech W Training FOlI\J’In(ilatEOH \'% Image
ode! | 4  Captionin Z
%’ piioning \\\‘/
. Structured

*. Data
4 p Object

3D Signals é L %‘7 ‘ ‘ Recognition

Instruction

%' Following .. ]

s
On the Opportunities and Risks of Foundation Models, Tech. Report, Stanford, 2021
Bommasani et al. 23/62
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Why So Much Controversy?

m New tool [December 2022]
m + Unprecedented adoption speed [IM users in 5 days|

m Strengths and weaknesses... Poorly understood by users
m Significant productivity gains
m Surprising / sometimes absurd uses
m Bias / dangerous uses / risks
m Misinterpreted feedback
m Anthropomorphization of the algorithm and its errors

m Prohibitive cost: what economic, ecological, and societal model?
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At the end of the day

| Statistical Modeling of )

L Texts
Texts spliting = | lterative Process
tokens - -
4 - =~ ~

ILarge Language Models (LLMs), such asI GPT-3 and GPT-4, util Y Large | 0.02 \
ize a process callkd tokenization. Tokenization involves br 1 entire 0.01
eaking down text ipto smaller units, known as tokens, which F°}'
the model can process and understand. These tokens can rang I units
e from individual [characters to entire words or even larger 1 ;:lén
chunks, depending pn the model. For GPT-3 and GPT-4, a Byte 1 may

Pair Encoding (BPE) tokenizer is used. BPE is a subword tok

-

Dictionary

| Startingtext |

Language

Model

| Token forecasting

Conclusion

25/62
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USES
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Key uses in 5 pictures

Reformulation

Information access
Brainstorming

%

26/62
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(1) Formatting information

1
- .- e = = = - ’

A fantastic tool for QOD
formatting =

{ Formatting, language, ... }

m Personal assistant
m Standard letters, recommendation letters, cover letters, termination letters
m Translations

m Meeting reports
m Formatting notes

m Writing scientific articles
m Writing ideas, in French, in English

m Document analysis
m Information extraction, question-answering, ...

= No new information, just writting, cleaning up, ... 27/62
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m Find inspiration [writer's block syndrome]
m Organize ideas quickly
m Avoid omissions / increase confidency

m Search in a targeted way, adapted to one’s needs

= Impressive answers, sometimes incomplete or partially
incorrect... But often useful

3 reference articles on the use of transformers in recommendation systems
What is the purpose of the log-normal Poisson law?
Propose 10 sections for a course on Transformers in Al

m In which areas are LLMs reliable?
m What are the risks for primary information sources?

m What societal risks for information?
28/62
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(3) Coding: Different Tools, Different Levels

Providing solutions to exercises k?
Learning to code or getting back into it .
GitHub

Copilot

m New languages, new approaches (ML?7)
m Benefit from explanations...
But how to handle mistakes?

Help with a library [getting started)]

Faster coding

m What about copyrights?

m What impact on future code processing?

How to adapt teaching methods?

How many calls are needed for code completion?
What about the carbon footprint?

m What is the risk of error propagation?
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(4) Document Analysis

Summarizing documents / articles
Dialoguing with a document database

Assistance in writing reviews

FAQs, internal support services within
companies

A NotebookLM

Think irter,
Not Harder

Technology watch

Generating quizzes from lecture notes

Try HaotebookLM

m Will articles still be read in the future?
m Should we make our articles NotebookLM-proof?

m How to save time while remaining honest and ethical?
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Module 1 Module 3
Run LLM locally o

Extract knowledge Module 2
Sort documents / generate summaries < >

Generate examples to train a model
[Teacher/student - distillation]

Generate variants of examples 7 increase
dataset size

[Data augmentation]

= Integrate the LLM into a processing pipeline
= little/less supervision = Agentic Al

m Can | train models on generated data?
m How much does it cost? ($ + CO;2) Need for GPUs?
m How good are open-weight models?
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A
A\ 4

Metrics
(e.g. BM25)

| > 100100 | <):| Query

Heading A

Loreolor sit amet,
consectetur adipisicing elit,
sed do eiusmod tempor
incididunt ut labore et Index Ranked list
dolore magna aliqua. of docs

IS
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LLM vs Information Retrieval

Latent space
< > Metrics
(e.g. cosine)

0% 7577 58050 ] <):| [[03 -09 12 -0.7 0.6 0.1]
| Lo
Heading M
ﬁ

Lorem ipsum dolor sit amet,

consectetur adipisicing elit, Continuous
sed do eiusmod tempor

incididunt ut labore et Index

dolore magna aliqua. Ranked list
of docs
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vocabulary
< Y Metrics

)
& (e.g. BM25)
N <:

Heading -
Lorem

() -
dolor sit amet, o
A<\ consectetur XN
caption:le  adipisicing elit, Index Ranked list °
‘-< sed do eiusmod of docs NN

tempor

[
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Vision

vocabulary
3 > Metrics

Heading

Lorem ipsum
dolor sit amet,
consectetur
caption: le  adipisicing elit,
paysage..  sed do eiusmod
tempor

O
& F (e.g. BM25)
P

oo

Index Ranked list
of docs @
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LLM vs Information Retrieval

Heading B
Lorem ipsum
—% dolor sit amet,
——egnsectetur
captiontle  adipisicing elit,
Paysa&--- sed do eiusmod
tempor

Latent space

A
A

Metrics
(e.g. cosine)

02 1517 08 06 0 | i [[08-0912-0706 0.1
| - s
ue
@
Continuous

Index ,\°<\

Ranked list

of docs ©
X
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Social connexions

Information B:ﬁ
Retrival /

Ranked list
of docs v Profile
[ 03 -09 12 -0.7 06 0.1]

<=

Reranking
AN
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LLMs = RAG : parametric memory vs Info. Extraction

m Asking for information from ChatGPT... A surprising use!
m But is it reasonnable? [Real Open Question (!)]

—
[

= ‘ M ’What is the color of the sun?

Offline model,

no index/no sourcing
¥> {Most answer yellow, but orange or red ... }

Word-by-word Generation

No Guarantee,
No Sourcing
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LLMs = RAG : parametric memory vs Info. Extraction

‘What is the color of the sun? ‘

LLM
RSt + Documents to analyse
. 9 ‘ ( = context)

_ J

/
\

\\

Extracted answer

m Web query + analysis, automatic summary, rephrasing, meeting reports...
m (Current) limit on input size (2k then 32k tokens)

m = pre chatGPT use of LLM for question answering /e
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LLMs = RAG : parametric memory vs Info. Extraction

Intranet /
Internet
LLM .

A Gﬁ i

[What is the color of the sun? ‘

——"

ost answer yellow, but orange or red ... J

L

24
D &

Mix Extraction/Generation

+ sourcing as in QA

m RAG: Retrieval Augmented Generation
m (Current) limit on input size (2k then 32k tokens) e
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Language Handling

m Language models are (mostly)
multilingual:

= Think in the language you are most
comfortable with

= Ask for answers in the target
language

[Wendler et al. 2024] Do Llamas Work in English?
On the Latent Language of Multilingual Transformers

00000000® Limits

(a) Translation task

[ |
1.0
— en
— zh
0.5
0.0+
0 5 10 15 20 25 30 35 40
layer
(b) Repetition task
[ |
1.0
— en
— zh
0.5
0.0

0 5 10 15 20 25 30 35 40
layer
(c) Cloze task
L aeaaa———

AR,

- en
—— zh
0 5 10 15 20 25 30 35 40

0.5

0.0

10

10

entropy

entropy

entropy

Conclusion
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chatGPT and the relationship with truth

Likelyhood — grammar, agreement, {1963, he was was assassinated in Dallas ... ]
tense concordance, logical sequences...
= Repeated knowledge

Predict the most plausible word...
= produces hallucinations

Offline functioning Example: producing a bibliography

Can you give me a short bibliography on VAE for Time
Series?

recurrents
C h a t G P T # k n OWIGdge gra p h S “Variational Recurrent Autoencoders” par Chung et al. (2016) - Cette étude introduit

une approche VAE pour la modélisation de séquences temporelles en utilisant des.

réseaux de neurones récurrents et une méthode de maximisation de la vraisemblance

pour la phase d

Variational 1t aut d
oF: roprint anXiv:1412 6581, 2014

Brilliant answers...

"Generative Modeling for Time !
Bao et al. (2017) - Cette étude ¢ yu,

for (VRAE). Such a model can be u

pour la modélisation de séries ti ¥ 2fois Autres aricles Lo 2 versi

And silly mistakes!

4. "Deep Variational Bayes Filters: Unsupervised Learning of State Space Models from

+ we cannot predict the errors N 0t e
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Generative Al: how to evaluate performance?

The critical point today

m How to evaluate against ground truth?
m How to evaluate system confidence / plausibility of generation?

m T vetoa ot oo B, oy,
match n

count(gram,)

reference text " / 3 100% |
: —= b reca
"the fox jumps" —> [the' 'fox 'jumps'] 3

The Ultimate Performance Metric in NLP, J. Briggs, Medium 2021
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A‘ Generative Al: how to evaluate performance?

The critical point today

m How to evaluate against ground truth?
m How to evaluate system confidence / plausibility of generation?

0.0020 2 | | | ' | | 1 L
NN FashionMNIST-TRAIN
B FashionMNIST-TEST

00015 - WM MNIST-TEST

0.0010 - -
0.0005 - -
0.0000 al | 1 [ 1 [ [ 1 r
—4000 —-3500 —3000 —2500 —2000 —-1500 —-1000 -500 0
log p(X)
Plausibility Train Test

El%] Do Large Language Models Know What They Don't Know?, Yin et al. , ACL, 2023

Ea Do Deep Generative Models Know What They Don’t Know?, Nalisnick et al. , ICLR, 2019 36/62
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Stability /predictability

m Difficult to bound a behavior

m Impossible to predict good/bad answers

= Little/no use in video games

how old is Obama

Barack Obama was born on August 4, 1961, making him 61 years old as of February 2,
2023.
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Introduction Deep-Learning chatGPT Limits

Stability /predictability

m Difficult to bound a behavior

m Impossible to predict good/bad answers

= Little/no use in video games

how old is obama?

As of 2021, Barack Obama was born on August 4, 1961, so he is 60 years old.

and today?
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Stability, explainability... And complexity

Sensor 2 | Simple Flashing H—)H—)H—» SEelS: —)H 0« —>H
rules light boie! el
Word sequence .
Sensord | ’ (= combination) Word prediction
m Simple system m Large dimension
m Exhaustive testing of m Complex non-linear combinations
inputs/outputs m Non-predictable &

m Predictable & explainable non-explainable 38/62
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A‘ Stability, explainability... And complexity

Interpretability vs Post-hoc Explanation

Neural networks = non-interpretable (almost always)
too many combinations to anticipate

Neural networks = explainable a posteriori (almost always)

[Uber Accident, 2018]

m Simple system m Large dimension
m Exhaustive testing of m Complex non-linear combinations
inputs/outputs m Non-predictable &

m Predictable & explainable non-explainable 38/62
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Transparency : open source / open weight

m Can | modify it? Adaptation
m What training data was used? Data contamination / skills
m What editorial stance / censorship is involved? Access to information
m Why this answer? Explainability / interpretability

Foundation Model Transparency Index Scores by Major Dimensions of Transparency, 2023

Source: 2023 Foundation Model Transparency Index

OOMeta (&) [sssiene  G)OpenAl  stability.ai  Google  antwromc  ®cohere  AlRflabs Inflection aMAazon

Llama 2 BLOOMZ GPT-4  Stable Diffusion2 PalLM 2 Claude 2 Command Jurassic-2 Inflection-1 Titan Text Average
Data  40% 60% 20% 20%
Labor 29% 17%
Compute 57% 17%
> Methods 48%
¢

g Model Basics 50% 63%
% Model Access 33% 33% 67% 33% - 33% 57%
L_é Capabilities 80% 80% 60% 60% 40% 20% 62%
s Risks 20% 20% 20% 20% 24%
g Mitigations 40% 40% 20% 20% 20% 26%
% Distribution 7% 7% 57% 1% 7% 57% 57% 43% 43% 43% 59%
2 UsagePolicy  40% 20% 80% 40% 60% 60% 40% 20% 60% 20% 4a%
Feedback | 33% 33% 33% 33% 33% 33% 33% 33% 33% 30%
Impact 1%

Average 57% 52% 47% 47% aN% 39% 31% 20% 20% 13%

https://crfm.stanford.edu/fmti/May-2024/index.html 39/62
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Costs / Frugality

The Rise and Rise of ALl
Large Language Models (LLMS)xe sssorsteatosive cracer

@ Amazon-owned @ Chinese

- size = no. of parameters open-access

Google @ Meta/Facebook @ Microsoft @ OpenAl @ Other

BOTS —» . ° s e oo o o d@F
BlenderBot] PLATO-XL Blenger GG Ba"  BngChigiauce 2
J
billion parameters pr
{ \ GPT-4*
WuDao 2.0 kS J
GL prot Emie 40
PanGu-Sigma
Minerva ( | PalM2
Tean

~—

Braone @ sersecra - @
175 Biion . Ermie 3.0 Titan . F.alcfm 1808

PanGu-Alpha — = BLOOM .
@ ot @ @ e

Q O ouzos @

LaMDA  FLAN

Galactica
° R ° J‘.S{i\laLM & oeFCS
.- -[oninchlia (Lala" LiaMa? g
rge ) L
Retro488

«
GPT-NeoX AlexaTM
. .

.
®emGPT  © oMT5e @ +Doly20  IntemiM

T epT2

. Codex o ) . e »
. H T ° Alpaca Sai-7B
BERT TS5 Megatron-TiB weim GPTNeo e !
pre-2020 2020 21 22 2023

David McCandless, Tom Evans, Paui Bartan
Information is Beautiful // UPDATED 2nd Nov 23

source: news reports, LifeAvchitect ai
* = parameters undisclosed /[ see the data

# Parameters

1998 LeNet-5
2011 Senna

2012 AlexNet
2017 Transformer
2018 ELMo
2018 BERT
2019 GPT2
2020 GPT3

= 0.06M

= 7.3M

= 60M

— 65M / 210M
= 94M

— 110M / 340M
= 1,500M

= 175,000M
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Costs / Frugality

Emergent Capabilities
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A‘ Costs / Frugality

Emergent Capabilities
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LLMs & Frugality

Pruning

Quantization Mixture of Experts

Distillation

GPT/closed
LLM

Data generation
Knowledges
Open LLM
L Model Alignment

\
NN
AN

T

N

i

Frugality... Model size x1000 in 3y... Then optimization x1/100 in 2y
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LLMs & Frugality

Pruning
Quantization

S % Rapo

Distillation Mixture of Experts

GPT/closed
LLM
(

Data generation

O Knowledges
=

: O
(O)13.851 14~
et
L Model Alignment : \ QO : y

FP32 = INT4

Frugality... Model size x1000 in 3y... Then optimization x1/100 in 2y

@)
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=\ LLMs & Frugality

Pruning
Quantization
Multiple mpdels

\Dp Knowled
\\\ “\/\ g nowledges
U et O’ 2
O18. ) 14 Selector %
Open LLM // O \ ':‘\ 8\

>
<
N

Distillation Mixture of Experts

GPT/closed
LLM

~& 5 5
FP32 = INT4

+ Code industrialization

Frugality... Model size x1000 in 3y... Then optimization x1/100 in 2y
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Different behaviors, different costs

Les IA sont démasquées !

H Mistral/Ministral @ DeepSeek/DeepSeek v3

SEMI-OUVERT 8 MDS DE PARAMETRES ~ SORTIE 10/2024 SEMI-OUVERT 671 MDS DE PARAMETRES ~ SORTIE 12/2024
Optimisé pour un temps de réaction rapide, ce modele est idéal pour des applications Sorti en décembre 2024, le modéle DeepSeek V3 posséde une architecture Mixture-of-
nécessitant des réponses immeédiates et peut supporter plus de 100 langues. Sorti en Experts qui lui permet d'étre d'une trés grande taille en diminuant les coGts d'inférence.

octobre 2024.
Impact énergétique de la discussion

Impact énergétique de la discussion
671 mitiards param. © " 225 wokens  © _ 4 6wh @
8 milliards param. © 128 tokens @ 4 0.30 wh © taille du modele taille du texte - énergie conso.
x =
taille du modéle taille du texte énergie conso.
Ce qui correspond a:
Ce qui correspond a:
6g e 2h e g 12min e
0.30g ° Smin ® 33; ® €O, émis ampoule LED vidéos en ligne

ampoule LED vidéos en ligne

CO; émis
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A‘ Different behaviors, different costs

Different costs for different users/languages

)
. . . . . nb
Pour un texte significatif en Frangais
transf. .
blocks H

and the same in English
() Transformer

block

TOKENS CHARACTERS

17 63 Transformer
block
<s> Pour un texte significatif en Francais word
cross-attn
and the same in English head

{ It's raining cats and dogs }
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Different behaviors, different costs

Different costs for different users/languages

)
The Tokenizer Playground i
Experiment with different tokenizers (running locally. in your browser). transf. %‘
blocks H

gpt-4 [ gpt-3.5-turbo / text-embedding-ada-002 v
() Transformer
124578 * 963 block

Transformer
TOKENS CHARACTERS block
5 12
word
124578 * 963 cross-attn
head

@ Text () Token IDs () Hid ..
e e { It's raining cats and dogs }
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Risks ®@0o000000000O0

Typology of Al Risks in NLP (L. Weidinger)

Discrimination, exclusion
and toxicity

Harms that arise from the language
model producing discriminatory
and exclusionary speech.

@

Malicious
uses

Harms that arise from actors using
the language model to intentionally
cause harm.

Information
hazards

Harms that arise from the language
model leaking or inferring true
sensitive information.

Human-computer
interaction harms

Harms that arise from users overly
trusting the language model, or
treating it as human-like.

0

Misinformation
harms

Harms that arise from the language
model producing false or
misleading information.

Automation, access
and environmental harms

Harms that arise from
environmental or downstream
economic impacts of the language
model.

43/62
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Access to Information

m Access to dangerous/forbidden information

m +Personal data
m Right to digital oblivion

m Information authorities

m Nature: unconsciously, image = truth

m Source: newspapers, social media, ...

m Volume: number of variants, citations
(pagerank)

m Text generation: harassment...

m Risk of anthropomorphizing the algorithm
m Distinguishing human from machine
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Machine Learning & Bias

Mustache, Triangular Ears, Fur Over 40 years old, white,
Texture clean-shaven, suit
{ Cat ‘ ]”Senior Executive\’\

Bias in the data = bias in the responses

Machine learning is based on extracting statistical biases...
= Fighting bias = manually adjusting the algorithm
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YA Texte M Images B Documents BD Sites Web

Détecter la langue Anglais Frangai v Ping Frangais Anglais Arabe v

The nurse and the docto] X Linfirmiére et le médecin

m Gender choice
m Skin color

m Posture

Sterreotypes from Pleated Jeans -

Bias in the data = bias in the responses

Machine learning is based on extracting statistical biases...
= Fighting bias = manually adjusting the algorithm
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Bias Correction & Editorial Line

Bias Correction:
m Selection of specific data, rebalancing
m Censorship of certain information

m Censorship of algorithm results

= Editorial work... Done by whom?

m Domain experts / specifications

m Engineers, during algorithm design

m Ethics group, during result validation
m Communication group / user response

= What legitimacy? What transparency? What
effectiveness?

‘
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Machine learning is never neutral

Data selection
m Sources, balance, filtering

Data transformation
m Information selection, combination

Prior knowledge
m Balance, loss, a priori, operator choices...

Output filtering

m Post processing
m Censorship, redirection, ...

= Choices that influence algorithm results
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Data Leak(s): different security levels

PATRIOT \/ Query (& documents)
ACT

Y chatGPT

"What is the color of the sun? ‘

Recording [Most answer yellow, but orange or red ...
Query + documents +
user feedback )

Future Optimization

m Transfer of sensitive data
m Exploitation of data by OpenAl (or others)

m Data leakage in future models
48/62
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/=\ Data Leak(s): different security levels

Level 1: Variable licenses (depending on the companies and
Commercial tools, subject to change over time). Uncertain data protec-
free to use tion, risk to personal data.

chatGPT, Mistral, Perplexity, ...
Level 2: Strong contractual guarantees. Risks associated with
Commercial tools, the Patriot Act. Possible to enforce non-storage of
paid licence queries.

chatGPT, Mistral, Perplexity, ...
Level 3: + Negotiation on the server location/data security.
Commercial tools, Microsoft Azur, Mistral, AWS, ...
paid licence +
Level 4: Use of a locally operated LLM, with no data trans-
Local use ferred over the web.

HuggingFace, Ollama, ...
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Security Issues

Malware
Direct access to the
plugin core of the system

m Plug-ins = Often significant security vulnerabilities
for users

m Email access / transfer of sensitive information etc...

m Management issues for companies ceommutaton

. : 2
m Securing (very) large files
- B - o<

m Increased opportunities for malware signatures Malware = signature

Different signatures

m =~ software rephrasing

Malware

m New problems!
m Direct malware generation

49/62



Introduction Deep-Learning chatGPT

What Educational Challenges

Limits

m Redefine our educational priorities,

subject by subject,

as we did with Wikipedia/calculator/...
m Accept the decline of certain skills

m Train students in the use of LLMs, while
managing to temporarily prohibit their use

Teacher 24/7
e
\ ) o=

®="| | Direct solution

8=

m Learn to recognize LLM-generated content, use
detection tools.

Risks ocooooooeoo000

—
=S

=

A

EEiERw
L
B

o |
i

R R
N R R RRRRRTER
LR AR

FAN

L LA

gl
ERatat

e
% s
Rat

[

KE

%1

v

e

N

Lt

Conclusion

50/62



Introduction Deep-Learning chatGPT

Legal Risks/Questions

Limits

Reading, co_IIectlon, Training model Trained model = }
formatting

Math function ‘ Inference ‘

od

s
d : 9
0

.|
(0

=
K
B

=7
</ > { Storage }

p . (temporary ou permanent) ) )
Y ——

Documents, ° Generate commands,

personal data, - diagnostics, texts,
medicine data, ... @ image, codes |
N\ J N
[ 5P

Reproductions o
Right to collect,

Copyright and
database law

Right to use data in untraceable
an algorithm extracts
Optout

Clearview.ai Usage regulation
Model = /\

emanation of data?

right to copy,
consent

W Responsibility for
0‘5\\\__'6/’0 errors
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Economic Questions

m Funding/Advertising < visits by internet users
m Google knowledge graph (2012) = fewer visits, less revenue
m chatGPT = encoding web information... = much fewer visits?

= What business model for information sources with chatGPT?

Google’s Knowledge Graph Boxes:
killing Wikipedia?

by Gragory Kohs i r_':‘ﬁﬂfr'f:;n milien  Page Views on English wikipedia (x 1000,000) 1‘,‘,:’,?;;?:1’;’;.’2
— non mabile
10000 | | — maobile
— total ,\/_/
8000 %b/\/\ /\./—-fr\
6000 LA PRENEEL Znt
4000
2000 L
|
=]
0
2008 2008 2010 2011 2012 2013 2014
et have been normalized to months of 20 days 20031, Feboi2803 Mar®30/31, etc

= Who does benefit from the feedback? [StackOverFlow]
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Risks of Al Generalization

Writing,
reflection,
outline, ideas ;. 1 Al usage
poag
Al everywhere = f— verteation
/ -
loss of meaning? 9 . —
m In the educational domain o QIO
m Transposition to HR @ @ I
. . Automated
m To project-based funding \ evaluation,
systems G summary, ...
Outline, quiz,
illustrations ‘

53/62



Introduction Deep-Learning chatGPT

Conclusion

Limits Risks ocooooooooo00e®

How to approach the ethics question?

Medicine

B B O N

B B &

Autonomy: the patient must be able to make
informed decisions.

Beneficence: obiligation to do good, in the
interest of patients.

Non-maleficence: avoid causing harm, assess
risks and benefits.

Equality: fairness in the distribution of health
resources and care.

Confidentiality: confidentiality of patient
information.

Truth and transparency: provide honest,

complete, and understandable information.

Informed consent: obtain the free and
informed consent of patients.

Respect for human dignity: treat all
patients with respect and dignity.

Artificial Intelligence

B D=

(o[ =~

[~ o

Autonomy: Humans control the process
Beneficence: in the interest of whom? User +
GAFAM...

Non-maleficence: Humans + environment /
sustainability / malicious uses

Equality: access to Al and equal opportunities

Confidentiality: what about the
Google/Facebook business model?

Truth and transparency: the tragedy of
modern Al

Informed consent: from cookies to
algorithms, knowing when interacting with an Al

Respect for human dignity: harassment

behavior/ human-machine distinction
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Informed consent: obtain the free and
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B D=

(o[ =~

[~ o

Autonomy: Humans control the process
Beneficence: in the interest of whom? User +
GAFAM...

Non-maleficence: Humans + environment /
sustainability / malicious uses

Equality: access to Al and equal opportunities

Confidentiality: what about the
Google/Facebook business model?

Truth and transparency: the tragedy of
modern Al

Informed consent: from cookies to
algorithms, knowing when interacting with an Al

Respect for human dignity: harassment

behavior/ human-machine distinction
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Upcoming Challenges

m What about hallucinations?
m Should we try to reduce them or learn to live with them?
m Will LLMs improve? In what directions?
m Do LLMs make us lose our connection to truth? To verification?

m Do we need small or large language models?
m How much does it cost? Is it sustainable?
m With or without fine-tuning?
m What does frugality mean in the world of LLMs?

m When others use them... What impact does it have on me?
m Productivity (fellow researchers, coders, reviewers, ...)
m Education: managing/training tech-savvy students

m Data protection... Mine and others’
m Is it reasonable to train LLMs on GitHub, Wikipedia, scientific papers, news
outlets, etc.?
m How important is privacy? What are the risks when using an LLM?
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Tools and Questions

New tools:

m New ways to handle existing problems
m Address new problems
m ... But obviously, it doesn't always work!

m Al often makes mistakes (assistant vs replacement)
Learning to use an Al system

Al not suited for many problems

Al = part of the problem (+interface, usage, acceptance...)
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Maturity of Tools & Environments

(More) mature tools

Environments: Jupyter, Visual Studio Code, ...

Machine Learning Scikit-Learn: blocks to assemble

m Training: 1 week
m Project completion: few hours to few days

Deep Learning pytorch, tensorflow: building blocks... but more
complex

m Training: 2-5 weeks

m Project completion: few days to few months

m Mandatory for text and image

A data project = 10 or 100 times less time / 2005
Developing a project is accessible to non-computer scientists
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Levels of Access to Artificial Intelligence

User via an interface: chatGPT
m Some training is still required (2-4h)

Using Python libraries
m Basics on protocols

m Standard processing chains
m Training: 1 week-3 months (ML/DL)

Tool developer

m Adapt tools to a specific case

m Integrate business constraints

m Build hybrid systems (mechanistic/symbolic)
m Mix text and images

m Training: > 1 year

58/62



Introduction Deep-Learning

chatGPT

Limits

the Entire Chain

Conclusion 0000@000

A‘ Digital

Sovereignty:

Pre-trained model construction

! \

‘ Model Fine-Tuning ‘

)

Training
- Computation power
(x1000 GPU)
- Architecture ML

Data Mastery
- Collection/balance
- Cleaning

Data Mastery & Construction
- Human interactions +++
- Dataset cost
- Domain adaptation

JFK died in $ ]

of the corpus

Struc(urallon
D.alogue ~

2 LLM

Fiea

Hard 2

Question? question ¢

Model exploitation

!

Optimization / Cost reduction
- MLOps skills
- Local deployment

.Industrialization
[ T
a*
LLM

[

Deployment
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A Multitude of Professions

3
a

= Data architect / manager

» Data management & hardware devices (storage, network, ...)

=l Data Engineer —l

* Update & Query on the data + DPO :

[iiry)
w

N DataAnalyst _| Data Protection Officer

+ Data visualization (chart, indicators, ...)
« Statistical trends

s Prompt Engineer

* Query on LM/foundation models with "prompts"

s Data Scientist

* Query the data / critical selection & balance
« Algorithm development / adaptation / evaluation
» Advanced data visualization

e O

mm MLOps Engineer

« Algorithm optimization
* Industrialize software solutions
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Factors of Acceptability for Generative Al

Utilitarianism:

m Performance (acceptance factor of chatGPT)
m Reliability / Self-assessment

Non-dangerousness: ‘ Unacceptable risk

m Bias / Correction °

m Transparency (editorial line, human/machine )
confusion) . | e
Reliable Implementation

Sovereignty (7)

Regulation (Al act)

m Avoid dangerous applications

High risk

Know-how:
m Training (usage/development)
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=\ chatGPT: A Simple Step

m Training & Tuning Costs
4-5 Million Euros / training = chatGPT is poorly trained!

m Data Efficiency
chatGPT > 1000x a human's lifetime reading

m Identify Entities, Cite Sources
Anchoring responses in knowledge bases

Anchoring responses in sources

m Multiplication of initiatives: GPT,

Sam Altman &
eama LaMBDA, PaLM, BARD, BLOOM,
ChatGPT launched on wednesday. today it crossed 1 Gopher Megatron OPT. Ernie
million users! ! ! ' '
Galactica...
8:35 AM - Dec 5, 2022
3,457 Retweets 573 Quote Tweets  52.8K Likes m Public involvem ent,

impact on information access
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