

## LES LLM ONT-ILS UNE CONSCIENCE? DES MODÈLES DE LANGUE À L'IA FORTE

Lundi 17 novembre 2025 AgroParisTech

Vincent Guigue vincent.guigue@agroparistech.fr https://vguigue.github.io



INRA© AgroParisTech

# DEEP-LEARNING

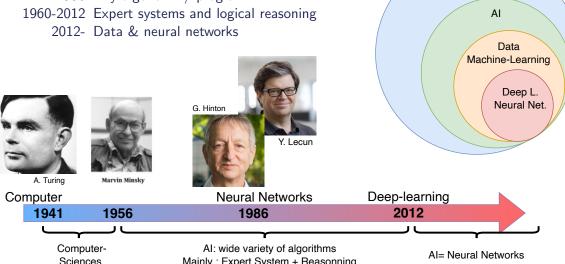
FROM AI TO

Digital

2/87

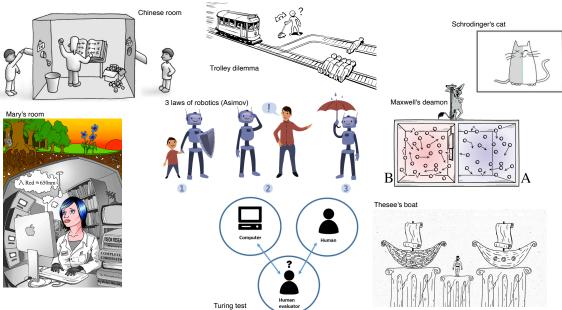
# Digital & Artificial Intelligence

- Two related but distinct concepts
- Al: Different Definitions 1956 Any algorithm / program



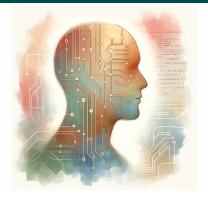


## Artificial Intelligence: many representations





## Artificial Intelligence & Machine Learning



| Input (X)           | Output (Y)             | Application         |
|---------------------|------------------------|---------------------|
| email ->>           | spam? (0/1)            | spam filtering      |
| audio               | text transcript        | speech recognition  |
| English             | Chinese                | machine translation |
| ad, user info>      | click? (0/1)           | online advertising  |
| image, radar info 🛶 | position of other cars | self-driving car    |
| image of phone>     | defect? (0/1)          | visual inspection   |
|                     |                        |                     |

**Al:** computer programs that engage in tasks which are, for now, performed more satisfactorily by human beings because they require high-level mental processes.

Marvin Lee Minsky, 1956

N-AI (Narrow Artificial Intelligence), dedicated to a single task

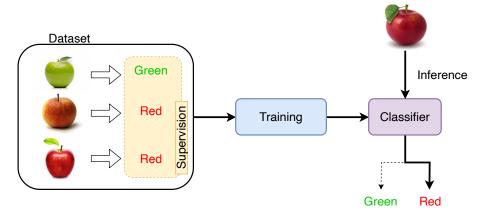
≠ **G-AI** (**General AI**), which replaces humans in complex systems.

Andrew Ng, 2015



#### Machine Learning Definition

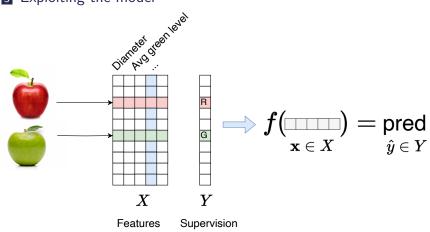
- Collecting labeled dataset
- 2 Training classifier
- Exploiting the model





#### Machine Learning Definition

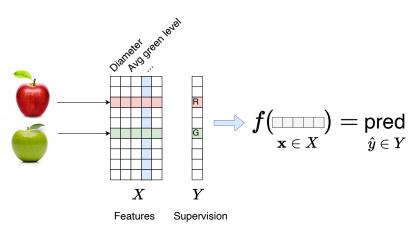
- Collecting labeled dataset
- 2 Training classifier
- 3 Exploiting the model

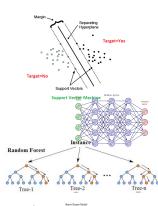




## Machine Learning Definition

- Collecting labeled dataset
- 2 Training classifier
- Exploiting the model

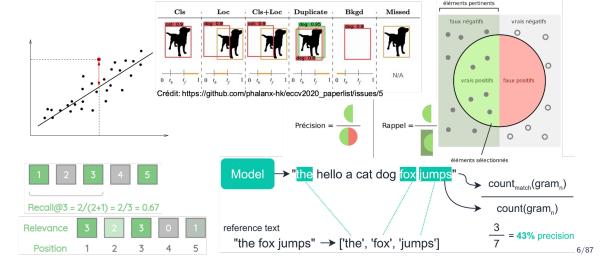






## Measuring Performance

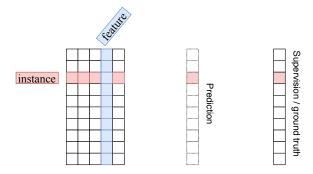
#### Estimating performance (in generalization)... as important as training the model!



Risks

## Measuring Performance

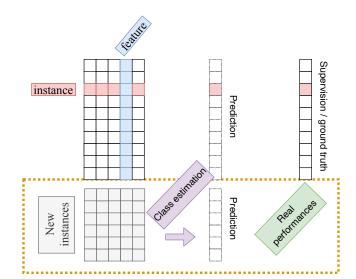
Estimating performance (in generalization)... as important as training the model!



LLM & Conscience

## Measuring Performance

Estimating performance (in generalization)... as important as training the model!



Uses



#### General Al vs Narrow Al

#### Narrow Al

Like any computer science project:

■ Define Inputs & Outputs

Introduction 00000 0000000

- Break down into subtasks
- Build & test components (processing chain)
- Assert (limited) generalization (iid assumption)
- Performances Evaluation



#### General Al

- Augmented Generalization Capability (Universality)
- Autonomous Learning
  - Data/information access
  - Knowledge extraction (Training+Eval+Confidence/Trust)
- Reasoning
- Conscience, Intentionality

Turing test

Wikipedia

#### From tabular data to text

- → Tabular data
  - → Fixed dimension
  - → Continuous values





→ f( □ ) = pred

- → Textual data
  - → Variable length
  - → Discrete values

this new iPhone, what a marvel

An iPhone? What a scam!



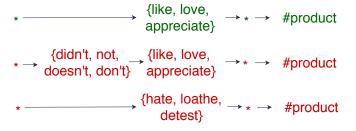


## AI + Textual Data: Natural Language Processing (NLP)

#### NLP = largest scientific community in Al

#### **Linguistics** [1960-2010]

#### **Rule-based Systems:**



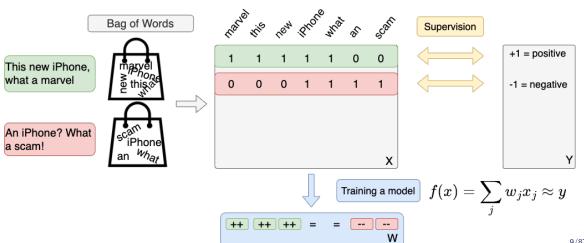
- Requires expert knowledge
- Rule extraction ⇔ very clean data
- Very high precision
- Low recall
- Interpretable system

## AI + Textual Data: Natural Language Processing (NLP)

NLP = largest scientific community in Al

#### Machine Learning [1990-2015]

Limits



Risks

## AI + Textual Data: Natural Language Processing (NLP)

NLP = largest scientific community in Al

#### **Linguistics** [1960-2010]

Requires expert knowledge

Introduction 0000000000000

■ Rule extraction ⇔

very clean data

- Interpretable system
- + Very high precision
- Low recall

#### **Machine Learning [1990-2015]**

- Little expert knowledge needed
- Statistical extraction ⇔ robust to noisy data
- ≈ Less interpretable system
- Lower precision
- Better recall

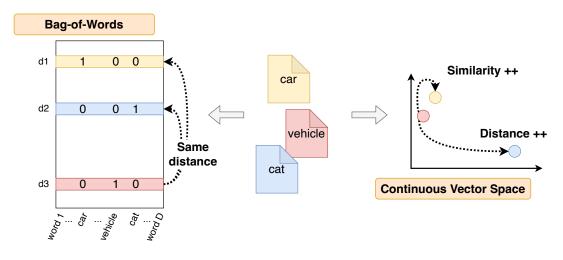
Precision = criterion for acceptance by industry

 $\rightarrow$  Link to metrics

## Deep/Representation Learning for Text Data

From Bag of Words to Vector Representations

[2008, 2013, 2016]



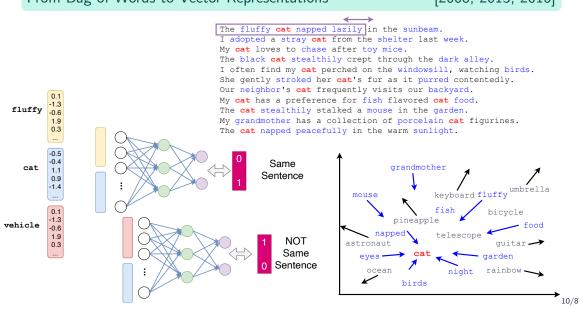
LeCun, Y., Bengio, Y., Hinton, G. (2015). Deep learning. Nature, 521(7553), 436-444.

# $oldsymbol{oldsymbol{eta}}^-$

## Deep/Representation Learning for Text Data

#### From Bag of Words to Vector Representations

[2008, 2013, 2016]

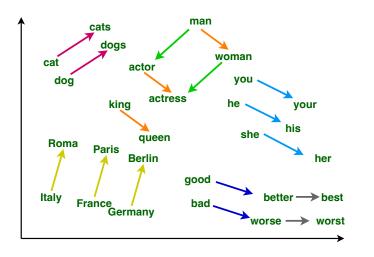




## Deep/Representation Learning for Text Data

From Bag of Words to Vector Representations

[2008, 2013, 2016]



- Semantic Space:

  similar meanings

  ⇔

  close positions
- Structured Space: grammatical regularities, basic knowledge, ...

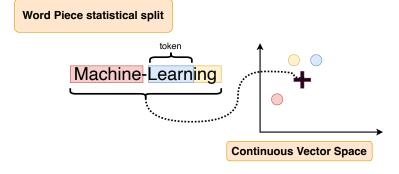


## Deep/Representation Learning for Text Data

#### From Bag of Words to Vector Representations

[2008, 2013, 2016]

#### From Words to Tokens

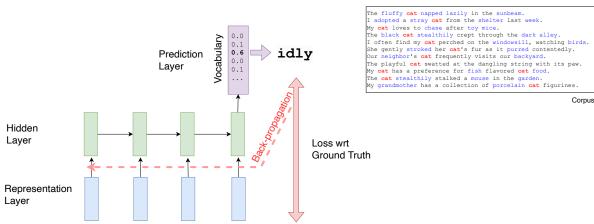


- Representation of unknown words
- Adaptation to technical domains
- Resistance to spelling errors

Enriching word vectors with subword information. Bojanowski et al. TACL 2017.

## Aggregating word representations: towards generative Al

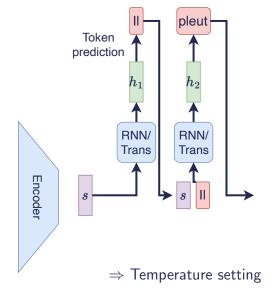
- Generation & Representation
- New way of learning word positions



The fluffy cat napped lazily in the sunbeam.

It's raining cats and dogs

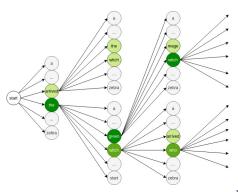
## Inference & Beam Search



- High cost  $\approx 1$  call / token
- Max. likelihood principle

Limits

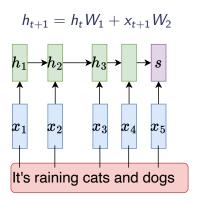
- NLP historical task =
  - specific classif./scoring archi.
  - constraint and/or post processing on generative archi.



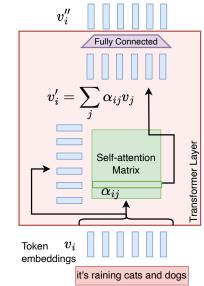
Risks

## Transformer architecture: state-of-the-art aggregation

#### **Recurrent Neural Network:**



#### **Transformer:**

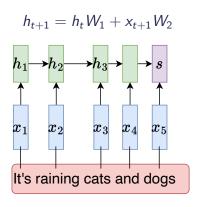


Attention is all you need, Vaswani et al. NeurIPS 2017

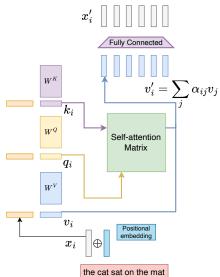


## Transformer architecture: state-of-the-art aggregation

#### **Recurrent Neural Network:**



#### **Transformer:**



Attention is all you need, Vaswani et al. NeurIPS 2017

Sequence to Sequence Learning with Neural Networks, Sutskever et al. NeurIPS 2014

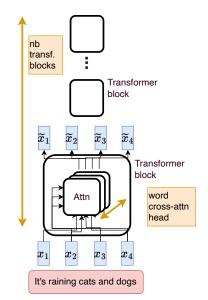


## Transformer architecture: state-of-the-art aggregation

#### **Recurrent Neural Network:**

# $h_{t+1} = h_t W_1 + x_{t+1} W_2$ $h_1 \rightarrow h_2 \rightarrow h_3 \rightarrow s$ $x_1 \quad x_2 \quad x_3 \quad x_4 \quad x_5$ It's raining cats and dogs

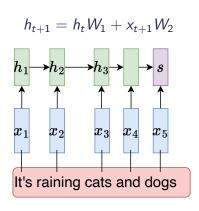
#### **Transformer:**



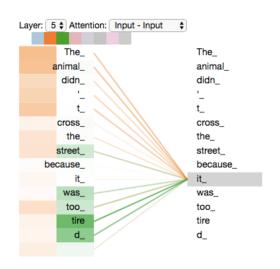


## Transformer architecture: state-of-the-art aggregation

#### **Recurrent Neural Network:**

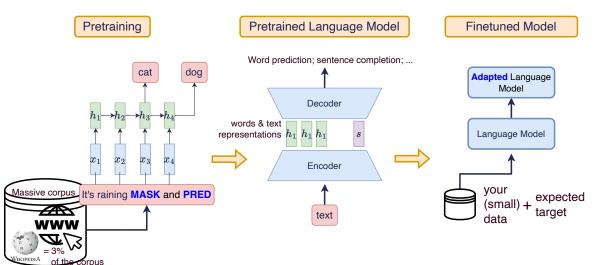


#### **Transformer:**



## A new developpement paradigm since 2015

- Huge dataset + huge archi.  $\Rightarrow$  unreasonable training cost
- Pre-trained architecture + 0-shot / finetuning



# CHATGPT

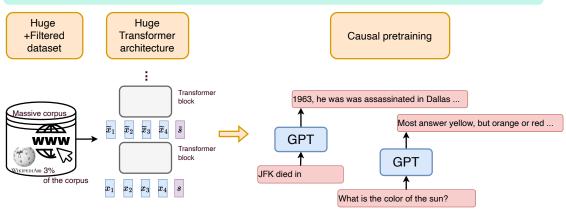
NOVEMBER 30, <u>2022</u>

1 MILLION USERS IN 5 DAYS 100 MILLION BY THE END OF JANUARY 2023 1.16 BILLION BY MARCH 2023 Introduction chatGPT ● 0 0 0 0 0 0 0 0 0 0 0 0 Uses Gen. AI Limits Risks LLM & Conscience



## The Ingredients of chatGPT

#### 0. Transformer + massive data (GPT)



- Grammatical skills: singular/plural agreement, tense concordance
- Knowledges: entities, names, dates, places



## The Ingredients of chatGPT

#### 1. More is better! (GPT)

 $[500 \Rightarrow 2k, 32k, 100k]$ + more input words

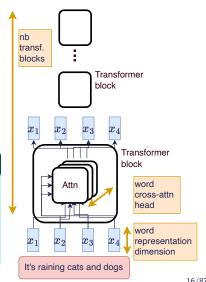
+ more dimensions in the word space  $[500-2k \Rightarrow 12k]$ 

+ more attention heads  $[12 \Rightarrow 96]$ 

 $[5-12 \Rightarrow 96]$ + more blocks/layers

#### 175 Billion parameters... What does it mean?

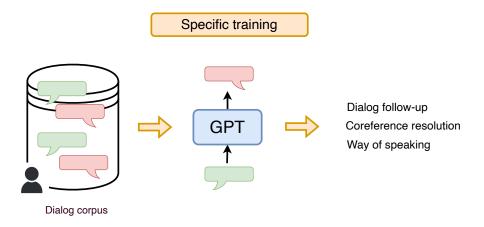
- $1.75 \cdot 10^{11} \Rightarrow 300 \text{ GB} + 100 \text{ GB}$  (data storage for inference)  $\approx 400 \text{GB}$
- NVidia A100 GPU = 80GB of memory (=20k€)
- Cost for (1) training: 4.6 Million €





## The Ingredients of chatGPT

#### 2. Dialogue Tracking



■ Very clean data

Data generated/validated/ranked by humans

Introduction chatGPT ○○○●○○○○○○○ Uses Gen. AI Limits Risks LLM & Conscience

# The Ingredients of chatGPT

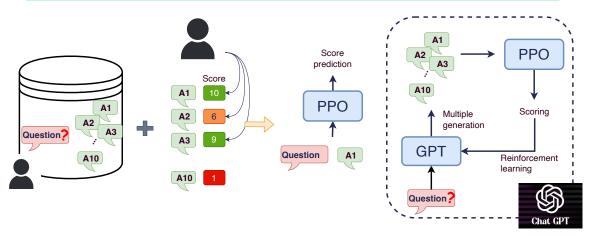
#### 3. Fine-tuning on different $(\pm)$ complex reasoning tasks

#### Instruction finetuning Please answer the following question. What is the boiling point of Nitrogen? -320.4F Chain-of-thought finetuning Answer the following question by The cafeteria had 23 apples reasoning step-by-step. originally. They used 20 to The cafeteria had 23 apples. If they make lunch. So they had 23 used 20 for lunch and bought 6 more. 20 = 3. They bought 6 more how many apples do they have? Language apples, so they have 3 + 6 = 9. model Multi-task instruction finetuning (1.8K tasks) Inference: generalization to unseen tasks Geoffrey Hinton is a British-Canadian computer scientist born in 1947. George Q: Can Geoffrey Hinton have a Washington died in 1799. Thus, they conversation with George Washington? could not have had a conversation together. So the answer is "no". Give the rationale before answering.

Introduction chatGPT 0000●000000 Uses Gen. AI Limits Risks LLM & Conscience

## The Ingredients of chatGPT

#### 4. Instructions + answer ranking



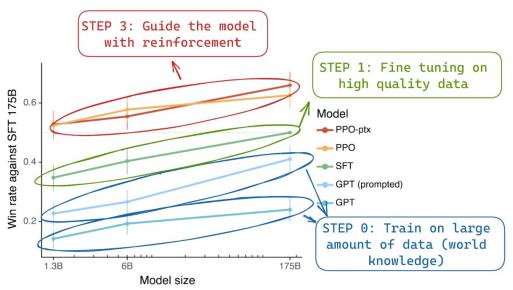
- Database created by humans
- Response improvement

... Also a way to avoid critical topics = censorship

# Steps & Performance

chatGPT 00000 • 000000

 $\mathsf{Massive}\;\mathsf{data} \Rightarrow \mathsf{HQ}\;\mathsf{data}\;\mathsf{(dialogue)} \Rightarrow \mathsf{Tasks} \Rightarrow \mathsf{RLHF}$ 





## Usage of chatGPT & Prompting

- Asking chatGPT = skill to acquire  $\Rightarrow$  *prompting* 
  - Asking a question well: ... in detail, ... step by step
  - Specify number of elements e.g. : *3 qualities for ...*
  - Provide context : *cell* for a biologist / legal assistant
- Don't stop at the first question
  - Detail specific points
  - Redirect the research
  - Dialogue
- Rephrasing
  - Explain like I'm 5, like a scientific article, bro style, ...
  - Summarize, extend
  - Add mistakes (!)
  - ⇒ Need for **practice** [1 to 2 hours], discuss with colleagues

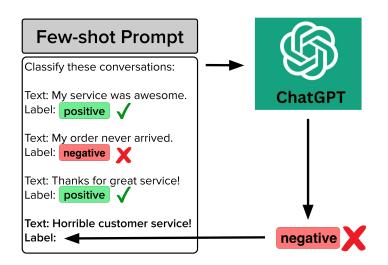


https://chatgptprompts.guru/what-makes-a-good-chatgpt-prompt/

# Towards few-shot learning

chatGPT 000000000000

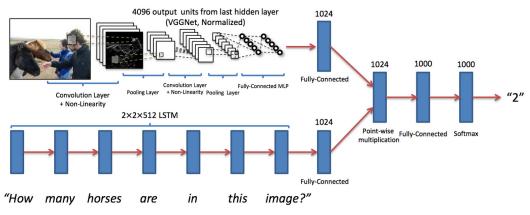
■ Learning without modifying the model = examples in the prompt



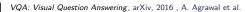
#### GPT4 & Multimodality

**Merging** information from text & image. **Learning** to exploit information jointly

The example of VQA: visual question answering

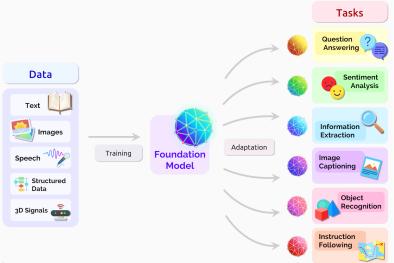


 $\Rightarrow$  Backpropagate the error  $\Rightarrow$  modify word representations + image analysis



### Towards Larger Foundation Models?

■ Let the modalities enrich each other







### Why So Much Controversy?

chatGPT 000000000000

■ New tool [December 2022]

+ Unprecedented adoption speed

[1M users in 5 days]

- Strengths and weaknesses... Poorly understood by users
  - Significant productivity gains
  - Surprising / sometimes absurd uses
  - Bias / dangerous uses / risks
- Misinterpreted feedback
  - Anthropomorphization of the algorithm and its errors
- Prohibitive cost: what economic, ecological, and societal model?

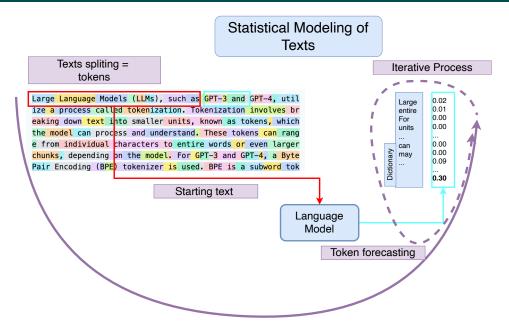








#### At the end of the day

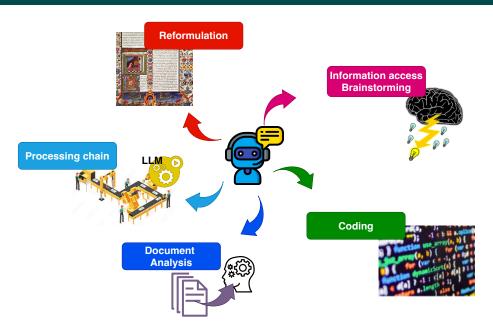


# Large Language Models

USES

Introduction chatGPT Uses ●○○○○○○○ Gen. AI Limits Risks LLM & Conscience

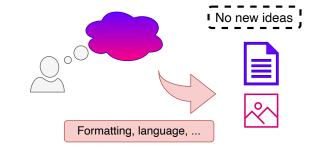
### Key uses in 5 pictures



Introduction chatGPT Uses ○●○○○○○○ Gen. AI Limits Risks LLM & Conscience



# A fantastic tool for **formatting**



- Personal assistant
  - Standard letters, recommendation letters, cover letters, termination letters
  - Translations
- Meeting reports
  - Formatting notes
- Writing scientific articles
  - Writing ideas, in French, in English

**No new information**  $\Rightarrow$  just writing, improving, translating, cleaning up, ...

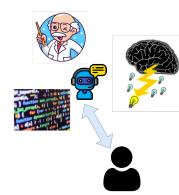


## (2) Brainstorming / Course Planning / Statistics Review

**■ Find** inspiration

[writer's block syndrome]

- **Organize** ideas quickly
- Avoid omissions / increase confidency
- **Search** in a targeted way, adapted to one's needs
- **Answer** student questions (24/7)
- Partner in research, test/enrich ideas
- ⇒ Impressive answers, sometimes incomplete or partially incorrect... But often useful



- In which areas are LLMs reliable?
- What are the risks for primary information sources?
- What societal risks for information?

### (3) Coding: Different Tools, Different Levels

- Providing solutions to exercises
- Learning to code or getting back into it
  - New languages, new approaches (ML?)
  - Benefit from explanations...

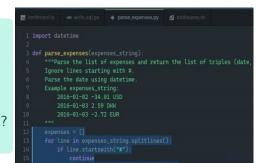
But how to handle mistakes?

- Help with a library [getting started]
- Faster coding
- What about copyrights?
  - What impact on future code processing?
- How to adapt teaching methods?
- How many calls are needed for code completion? What about the carbon footprint?
- What is the risk of error propagation?







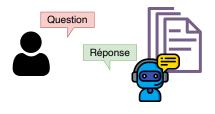


Introduction chatGPT Uses ○○○○●○○○○ Gen. AI Limits Risks LLM & Conscience

# (4) Document Analysis



- Dialoguing with a document database
- Assistance in writing reviews
- FAQs, internal support services within companies
- Technology watch
- Generating quizzes from lecture notes



NotebookLM

#### Think Smarter, Not Harder

Try NatebookLM

- Will articles still be read in the future?
  - Should we make our articles NotebookLM-proof?
- How to save time while remaining honest and ethical?

Introduction chatGPT Uses ○○○○●○○○ Gen. Al Limits Risks LLM & Conscience

# (5) LLM in a Production Pipeline / Agentic Al

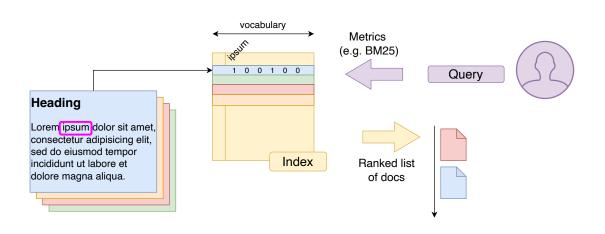
- Run LLM locally
- Extract knowledge
- Generate examples to train a model [Teacher/student - distillation]
- Generate variants of examples <a> → ¬ increase dataset size</a>

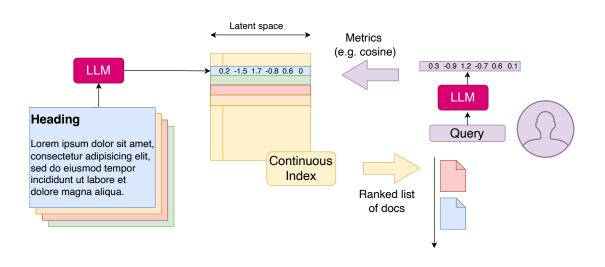
[Data augmentation]

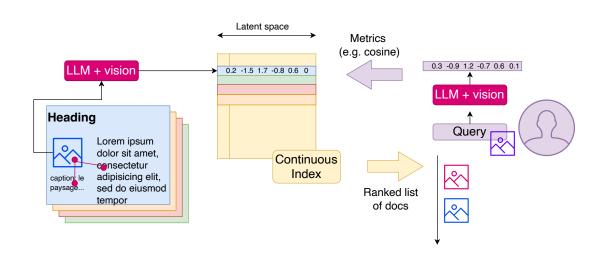
⇒ Integrate the LLM into a processing pipeline
 = little/less supervision = Agentic AI

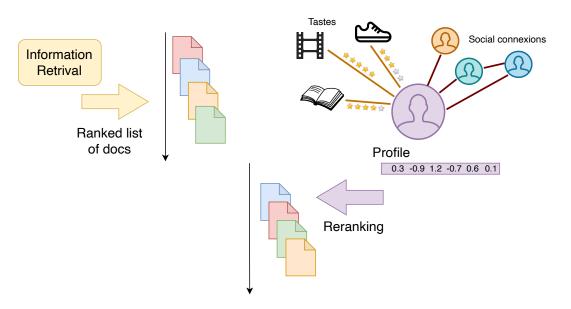


- How much does it cost? (\$ + CO<sub>2</sub>) Need for GPUs?
- How good are open-weight models?
- How to build multiple agents?







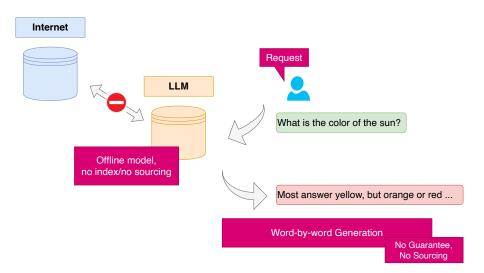




#### LLMs $\Rightarrow$ RAG : parametric memory *vs* Info. Extraction

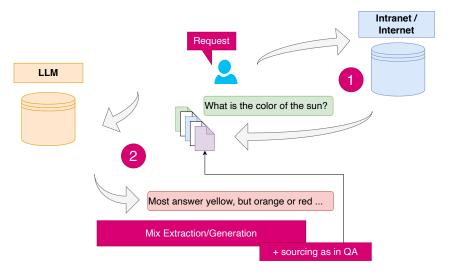
- Asking for information from ChatGPT... A surprising use!
- But is it reasonnable?

[Real Open Question (!)]



Introduction chatGPT Uses ○○○○○○●○ Gen. AI Limits Risks LLM & Conscience

# $\overline{\text{LLMs}} \Rightarrow \overline{\text{RAG}}$ : parametric memory vs Info. Extraction

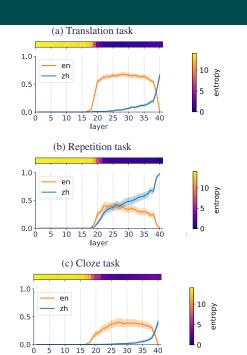


- RAG: Retrieval Augmented Generation
- (Current) limit on input size (2k then 32k tokens)

# Language Handling

- Language models are (mostly) multilingual:
- ⇒ Think in the language you are most comfortable with
- $\Rightarrow$  Ask for answers in the target language

[Wendler et al. 2024] Do Llamas Work in English? On the Latent Language of Multilingual Transformers



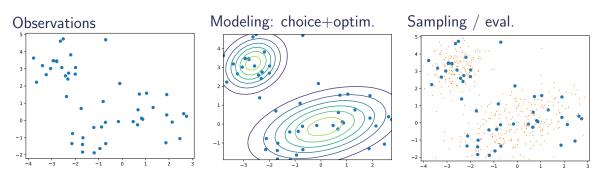
# From Generative AI

TO FOUNDATION MODELS



#### At the origin of statistical modeling

- Observing data (and context)
- **2 Modeling** = Choosing probabilistic model / bayesian network
- 3 Optimize parameters (Max. Likelihood, EM, BFGS, ...)
- **Sampling** / Inference + Evaluate distances : existing *vs* sampled

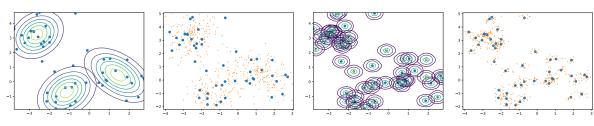




#### At the origin of statistical modeling

- Observing data (and context)
- **2 Modeling** = Choosing probabilistic model / bayesian network
- 3 Optimize parameters (Max. Likelihood, EM, BFGS, ...)
- **Sampling** / Inference + Evaluate distances : existing *vs* sampled

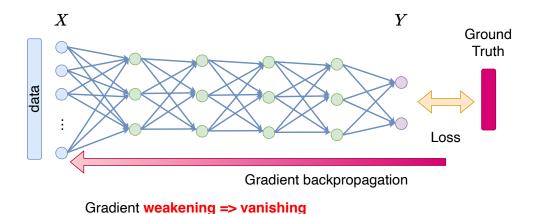
#### Different modeling options / different traps





### At the origin of deep learning

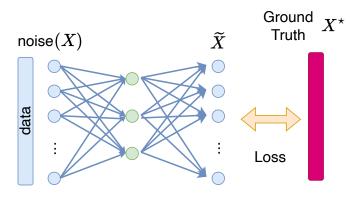
■ Gradient vanishing issue in deep architecture



Introduction chatGPT Uses Gen. Al ○●○○○○○○ Limits Risks LLM & Conscience

#### At the origin of deep learning

- Gradient vanishing issue in deep architecture
- Auto-Encoder architecture / facing unsupervised dataset with NN



- Denoising
- Low dimensional representation learning (/ PCA, SVD)

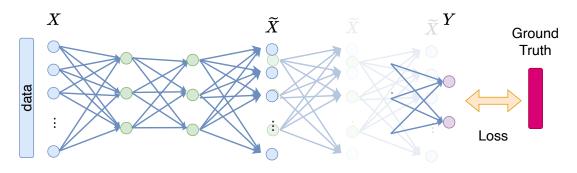


Auto-association by multilayer perceptrons and singular value decomposition, Biological Cybernetics, 1988 H. Bourlard & Y. Kamp



#### At the origin of deep learning

- Gradient vanishing issue in deep architecture
- Auto-Encoder architecture / facing unsupervised dataset with NN
- Stacked Denoising Auto-Encoder : iterative training / **pretraining**

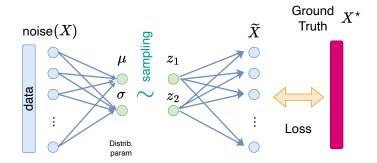




The difficulty of training deep architectures and the effect of unsupervised pre-training, AIS, PMLR 2009 Erhan, D., Manzagol, P. A., Bengio, Y., Bengio, S., & Vincent, P.



#### Variational Auto-Encoder



- a priori on the distribution
- Structuring of the latent space

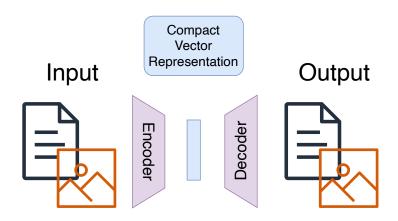
Generative AI (for statisticians)



Auto-Encoding Variational Bayes, 2013 DP Kingma



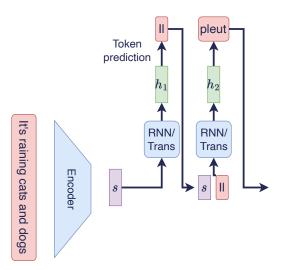
#### Different Forms of Generative Al



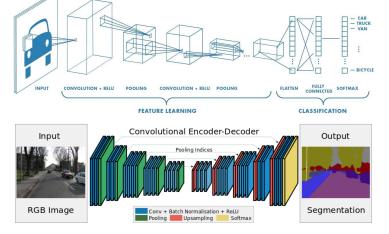
- **1** Encode an input = construct a vector
- **2** Decode a vector = generate an output



■ Texts: classification problem



- Texts: classification problem
- Images: multivariate regression problem





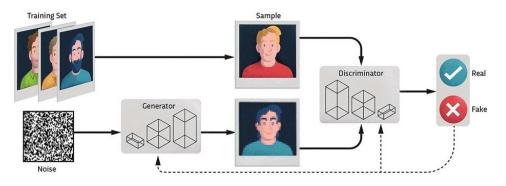
U-Net: Convolutional Network for Biomedical Image Segmenta tion, MICCAI, 2015 Ronneberger et al.

NVidia Lab.



- Texts: classification problem
- Images: multivariate regression problem

Generative Adversarial Networks (GAN): detecting generated samples

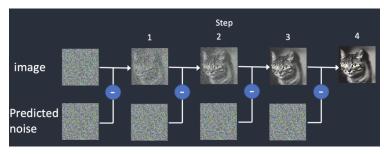


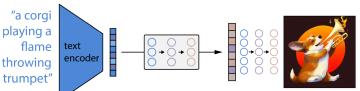


Generative Adversarial Nets, NeurIPS 2014 Goodfellow et al.



- Texts: classification problem
- Images: multivariate regression problem
- Physical processes







Denoising Diffusion Probabilist Models, NeurlPS, 2020 Ho, J., Jain, A., & Abbeel, P.



Hierarchical Text-Conditional Image Generation with CLIP Latents, arXiv, 2022 Ramesh et al. Introduction chatGPT Uses Gen. AI ○○○○●○○○○ Limits Risks LLM & Conscience

#### Different Media / Different Architectures

- Texts: classification problem
- Images: multivariate regression problem
- Physical processes
- Complex structures / 3D / graphs: sequential problem
- Mix mechanistic and *data-driven* approaches

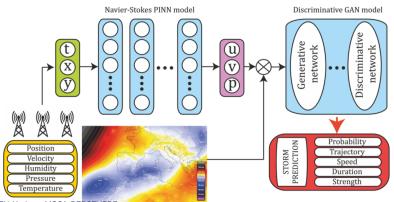
e.g. Model differential equations in a neural network



Neural ordinary differential eq tions, NeurIPS, 2018 Chen et al.



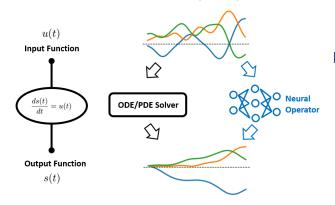
Physics-informed neural networ J. Comp. Physics, 2019 Raissi et al



Risks

#### Different Media / Different Architectures

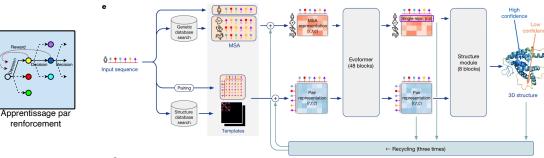
- Texts: classification problem
- Images: multivariate regression problem
- Physical processes
- Complex structures / 3D / graphs: sequential problem



Data + Models:

- PDE, neural ODE
- Simulation approximations
- Residual Models
- Hybrid Complex Systems

- Texts: classification problem
- Images: multivariate regression problem
- Physical processes
- Complex structures / 3D / graphs: sequential problem
  - Reinforcement learning: action/reward

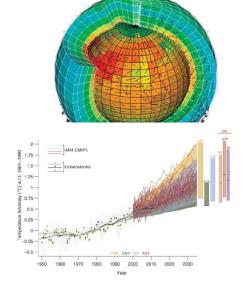


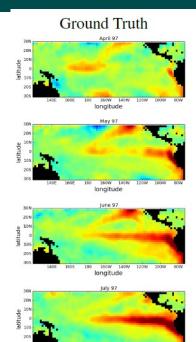


Highly accurate protein structure prediction with AlphaFold, Nature, 2021 Jumper et al.

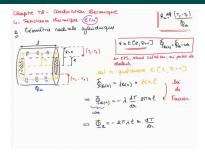
Introduction chatGPT Uses Gen. AI ○○○○○●○○○ Limits Risks LLM & Conscience

# Data-driven vs Modeling

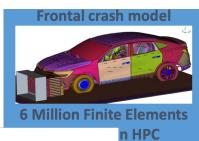


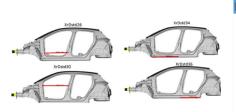


# Data-driven *vs* Modeling





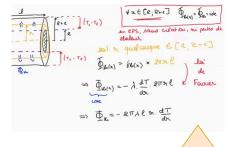




Gen. Al

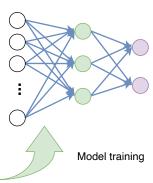


#### Mecanistic model / simulation



Boundary conditions Calibration

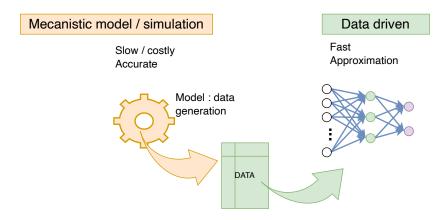
#### Data driven







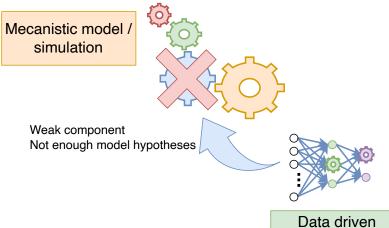
# Data-driven *vs* Modeling





# Data-driven *vs* Modeling

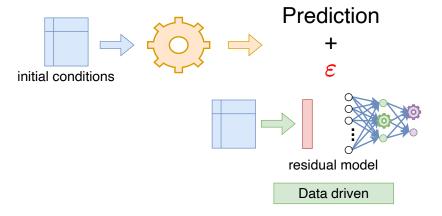
#### Huge composite mecanistic model





# Data-driven *vs* Modeling

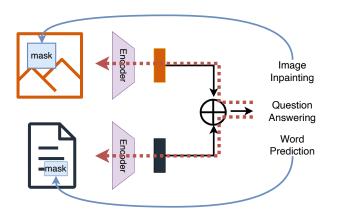
#### Mecanistic model / simulation





## Multi-Modality

- Construction of multimodal representation spaces = grounding
- Image ⇒ Text: Captioning, Visual Question Answering
- Text  $\Rightarrow$  Image: *mid-journey, dall-e, ...*



# **Alignment** of representation spaces

| Word     | Teraword   | Knext   |
|----------|------------|---------|
| Spoke    | 11,577,917 | 372,042 |
| Laughed  | 3,904,519  | 179,395 |
| Murdered | 2,843,529  | 16,890  |
| Inhaled  | 984,613    | 5,617   |
| Breathed | 725,034    | 41,215  |

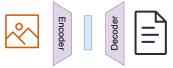
Introduction chatGPT Uses Gen. AI ○○○○○●○○ Limits Risks LLM & Conscience

## Multi-Modality

■ Construction of multimodal representation spaces = grounding

■ Image ⇒ Text: Captioning, Visual Question Answering

 $\blacksquare$  Text  $\Rightarrow$  Image: mid-journey, dall-e, ...

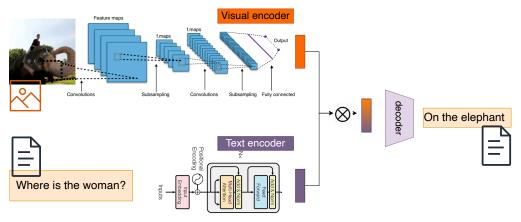








- Construction of multimodal representation spaces = grounding
- Image ⇒ Text: Captioning, Visual Question Answering
- lacktriangle Text  $\Rightarrow$  Image: mid-journey, dall-e, ...





Vqa: Visual question answering, ICCV, 2015 Antol et al.



## Multi-Modality

- Construction of multimodal representation spaces = *grounding*
- Image ⇒ Text: Captioning, Visual Question Answering
- Text  $\Rightarrow$  Image: *mid-journey, dall-e, ...*









TEXT DESCRIPTION

An astronaut Teddy bears A bowl of soup

riding a horse lounging in a tropical resort in space playing basketball with cats in space

in a photorealistic style in the style of Andy Warhol as a pencil drawing

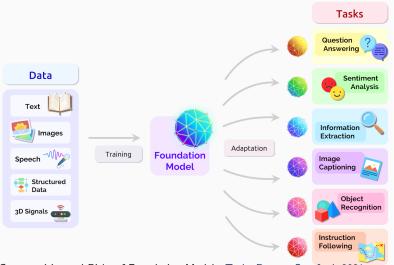


 $\rightarrow$ 





■ Let the modalities enrich each other





#### The main challenges of multimodality

- New applications
  - at the interface between text, image, music, voice, ...
- Performance improvement
  - Better encoding, disambiguation, context encoding
- Explainability (through dialogue)
  - IoT / RecSys / Intelligent Vehicle / ...



Dall-e

# Machine Learning Limits







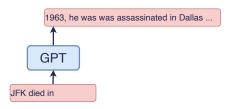
Risks



## chatGPT and the relationship with truth

- **1 Likelyhood** = grammar, agreement, tense concordance, logical sequences... ⇒ Repeated knowledge
- 2 Predict the most **plausible** word... ⇒ produces hallucinations
- **Offline** functioning
- 4 chatGPT  $\neq$  knowledge graphs
- Brilliant answers...

And silly mistakes! + we cannot predict the errors



#### Example: producing a bibliography



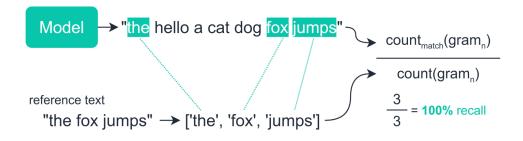
0 • 0 0 0 0 0 0 0



## Generative Al: how to evaluate performance?

#### The critical point today

- How to evaluate against ground truth?
- How to evaluate system confidence / plausibility of generation?

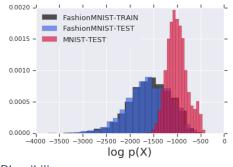


Introduction chatGPT Uses Gen. AI Limits ○●○○○○○○ Risks LLM & Conscience

# Generative AI: how to evaluate performance?

#### The critical point today

- How to evaluate against ground truth?
- How to evaluate system confidence / plausibility of generation?





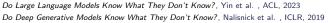


Plausibility

Train



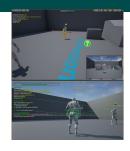


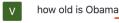




# Stability/predictability

- Difficult to bound a behavior
- Impossible to predict good/bad answers
- ⇒ Models that regularly discredit themselves Little/no use in video games
- Impossible to certify these models for critical applications







Barack Obama was born on August 4, 1961, making him 61 years old as of February 2, 2023.

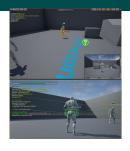




Introduction chatGPT Uses Gen. AI Limits 00000000 Risks LLM & Conscience

# Stability/predictability

- Difficult to bound a behavior
- Impossible to predict good/bad answers
- $\Rightarrow$  Models that regularly discredit themselves Little/no use in video games
- $\Rightarrow$  Impossible to certify these models for critical applications



v how old is obama?



As of 2021, Barack Obama was born on August 4, 1961, so he is 60 years old.

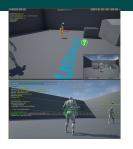




v and today?

# Stability/predictability

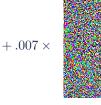
- Difficult to bound a behavior
- Impossible to predict good/bad answers
- ⇒ Models that regularly discredit themselves Little/no use in video games
- Impossible to certify these models for critical applications





 $\boldsymbol{x}$ 

"panda"



 $sign(\nabla_{\boldsymbol{x}}J(\boldsymbol{\theta},\boldsymbol{x},y))$ 

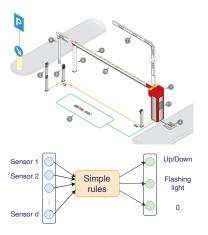


"nematode" 57.7% confidence 8.2% confidence  $\epsilon \operatorname{sign}(\nabla_{\boldsymbol{x}} J(\boldsymbol{\theta}, \boldsymbol{x}, y))$ "gibbon" 99.3 % confidence

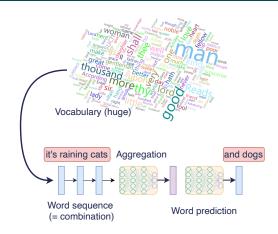
47/87

Introduction chatGPT Uses Gen. AI Limits 000●00000 Risks LLM & Conscience

# Stability, explainability... And complexity



- Simple system
- Exhaustive testing of inputs/outputs
- Predictable & explainable



- Large dimension
- Complex non-linear combinations
- Non-predictable & non-explainable

Introduction chatGPT Uses Gen. AI Limits ○○○●○○○○○ Risks LLM & Conscience

# Stability, explainability... And complexity

### Interpretability vs Post-hoc Explanation

Neural networks = **non-interpretable** (almost always)

too many combinations to anticipate

Neural networks = **explainable a posteriori** (almost always)



- Simple system
- Exhaustive testing of inputs/outputs
- Predictable & explainable

[Uber Accident, 2018]

- Large dimension
- Complex non-linear combinations
- Non-predictable & non-explainable

## Transparency: open source / open weight

■ Can I modify it?

Adaptation Data contamination / skills

■ What training data was used?

Access to information

■ What editorial stance / censorship is involved?

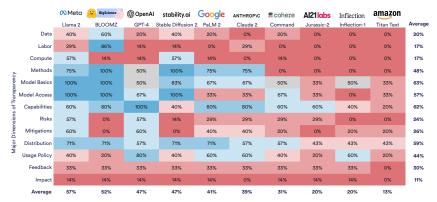
Lilia. / intermediation

■ Why this answer?

Explainability / interpretability

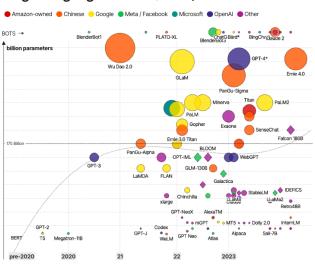
Foundation Model Transparency Index Scores by Major Dimensions of Transparency, 2023

Source: 2023 Foundation Model Transparency Index



# Costs / Frugality

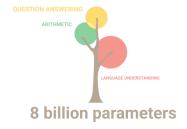
# The Rise and Rise of A.I. Size = no. of parameters open-access Large Language Models (LLMs) & their associated bots like ChatGPT



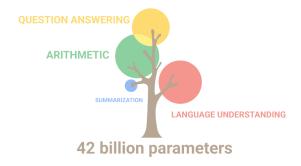
#### **#** Parameters

1998 LeNet-5 = 0.06M2011 Senna = 7.3M2012 AlexNet = 60M2017 Transformer = 65M /2018 ELMo = 94M2018 BERT = 110M / 340M2019 GPT2 = 1.500M2020 GPT3 = 175.000M

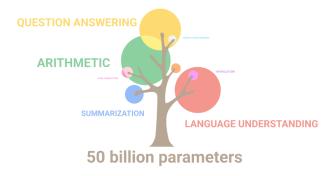




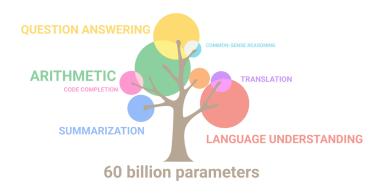




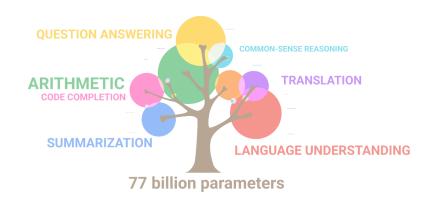




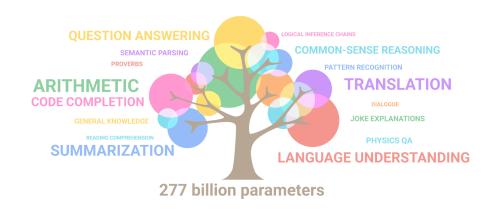




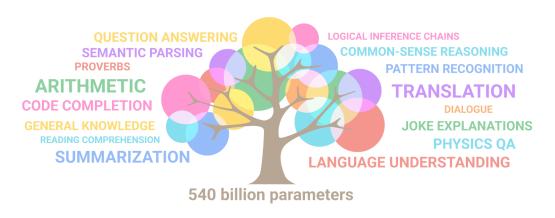
# Costs / Frugality







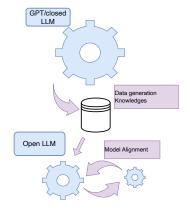






# LLMs & Frugality

### Distillation



Pruning Quantization

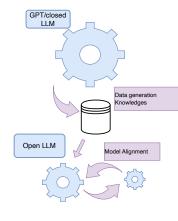
Mixture of Experts

Frugality... Model size x1000 in 3y... Then optimization x1/100 in 2y

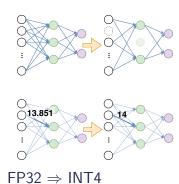


# LLMs & Frugality

### **Distillation**



# Pruning Quantization



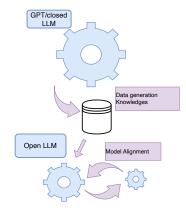
### Mixture of Experts

Frugality... Model size x1000 in 3y... Then optimization x1/100 in 2y

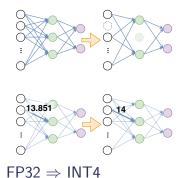


# LLMs & Frugality

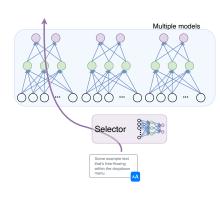
### Distillation



# Pruning Quantization



### Mixture of Experts



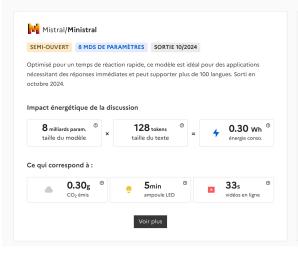
+ Code industrialization

Frugality... Model size x1000 in 3y... Then optimization x1/100 in 2y



### Different behaviors, different costs

#### Les IA sont démasquées!

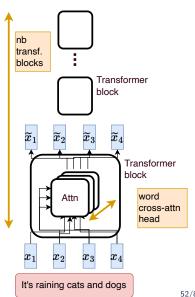




### Different behaviors, different costs

#### Different costs for different users/languages

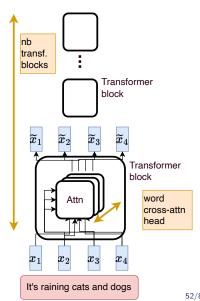
```
Pour un texte significatif en Français
and the same in English
                              CHARACTERS
                       TOKENS
                                 63
<s> Pour un texte significatif en Français
and the same in English
```



# Different behaviors, different costs

Different costs for different users/languages

|              | Tokenizer Playground with different tokenizers (running <u>locally</u> in your browser). |  |
|--------------|------------------------------------------------------------------------------------------|--|
|              | gpt-4 / gpt-3.5-turbo / text-embedding-ada-002 💙                                         |  |
| 124578 * 963 |                                                                                          |  |
|              | tokens characters 5 12                                                                   |  |
| 124578 * 963 |                                                                                          |  |
|              | ● Text ◯ Token IDs ◯ Hir                                                                 |  |





# Everything beyond the LLM's capabilities/training

- Simple calculations (multiplication, division)
- Generating *n*-syllable animal names (in progress)
- Playing chess
- Follow (complex) causal reasoning
- **.**..

# ATARI 2600 SCORES STUNNING VICTORY OVER CHATGPT



WHEN YOU UNDERESTIMATE A 1977 CHESS ENGINE... AND IT HUMBLES YOU IN FRONT OF THE WHOLE INTERNET

# (Main) Risks

DERIVED FROM ML & LLM

# Typology of Al Risks in NLP (L. Weidinger)



Discrimination, exclusion and toxicity

Harms that arise from the language model producing discriminatory and exclusionary speech.



Malicious uses

Harms that arise from actors using the language model to intentionally cause harm



Information hazards

Harms that arise from the language model leaking or inferring true sensitive information.



Human-computer interaction harms

Harms that arise from users overly trusting the language model, or treating it as human-like.



Misinformation harms

Harms that arise from the language model producing false or misleading information.



Automation, access and environmental harms

Harms that arise from environmental or downstream economic impacts of the language model.

Introduction chatGPT Uses Gen. AI Limits Risks 00000000000000000 LLM & Conscience

#### Access to Information

- Access to dangerous/forbidden information
  - +Personal data
  - Right to be forgotten (GDPR)
- Information authorities
  - Nature: unconsciously, image = truth
  - Source: newspapers, social media, ...
  - Volume: number of variants, citations (pagerank)
- Text generation: harassment...
- Risk of anthropomorphizing the algorithm
  - Distinguishing human from machine







Introduction chatGPT Uses Gen. AI Limits Risks ●00000000000 LLM & Conscience

### Machine Learning & Bias



Mustache, Triangular Ears, Fur Texture

Cat



Over 40 years old, white, clean-shaven, suit

Senior Executive

#### Bias in the data $\Rightarrow$ bias in the responses

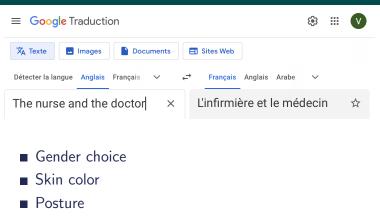
Machine learning is based on extracting statistical biases...

⇒ Fighting bias = manually adjusting the algorithm

## Machine Learning & Bias



Sterreotypes from Pleated Jeans



#### Bias in the data $\Rightarrow$ bias in the responses

Machine learning is based on extracting statistical biases...

 $\Rightarrow$  Fighting bias = manually adjusting the algorithm

Introduction chatGPT Uses Gen. AI Limits Risks00●0000000000 LLM & Conscience

# Bias Correction & Editorial Line

#### **Bias Correction:**

- Selection of specific data, rebalancing
- Censorship of certain information
- Censorship of algorithm results
- ⇒ Editorial work...

Done by whom?

- Domain experts / specifications
- Engineers, during algorithm design
- Ethics group, during result validation
- Communication group / user response
- ⇒ What legitimacy? What transparency? What effectiveness?









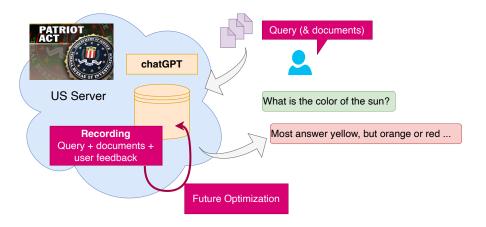
### Machine learning is never neutral

- Data selection
  - Sources, balance, filtering
- Data transformation
  - Information selection, combination
- 3 Prior knowledge
  - Balance, loss, a priori, operator choices...
- 4 Output filtering
  - Post processing
  - Censorship, redirection, ...
- ⇒ Choices that influence algorithm results



Introduction chatGPT Uses Gen. AI Limits Risks0000 ●0000000000 LLM & Conscience

# Data Leak(s): different security levels



- Transfer of sensitive data
- Exploitation of data by OpenAl (or others)
- Data leakage in future models

Introduction chatGPT Uses Gen. AI Limits Risks0000 ●000000000 LLM & Conscience

# Data Leak(s): different security levels



Commercial tools, free to use Variable licence

Commercial tools,
Paid licence
more guaranties vs patriot

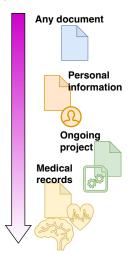
Commercial tools, Paid licence + option e.g. European servers

Institutional LLMs deployed within a controlled perimeter

Local use pre-trained/finetuned models







- Plug-ins ⇒ Often significant security vulnerabilities for users
  - Email access / transfer of sensitive information etc...
- Management issues for companies
  - Securing (very) large files
- Increased opportunities for malware signatures
  - $\blacksquare \approx \text{software rephrasing}$
- New problems!
  - Direct malware generation







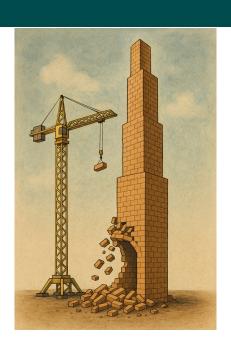
■ Redefine our educational priorities, subject by subject, as we did with Wikipedia/calculator/...

Educational Challenges

- Accept the decline of certain skills
- Train students in the use of LLMs, while managing to temporarily prohibit their use



■ Learn to recognize LLM-generated content, use detection tools.



Introduction chatGPT Uses Gen. AI Limits Risks>0000000 0000000 LLM & Conscience

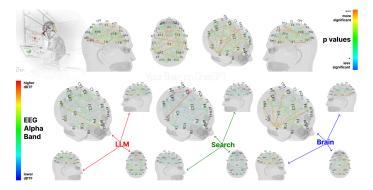
### Decline / Evolution of Cognitive skills

Our brain will evolve with these new tools...

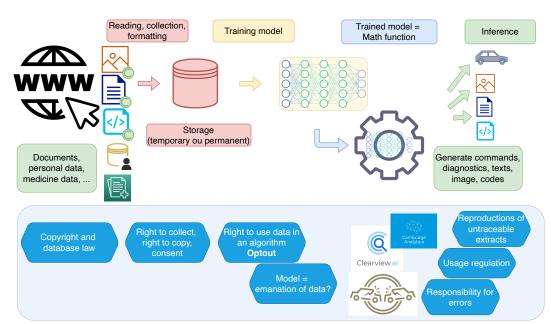
What is the scope of these transformations? What will be the consequences?

■ Education sciences and psychology had conjectured it...

cognitive sciences have measured it



### Legal Risks/Questions

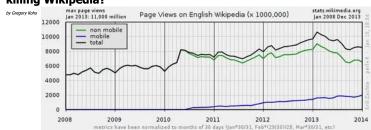




#### **Economic Questions**

- Funding/Advertising ⇔ **visits** by internet users
- Google knowledge graph (2012)  $\Rightarrow$  fewer visits, less revenue
- chatGPT = encoding web information... ⇒ much fewer visits?
- ⇒ What **business model for information sources** with chatGPT?

### Google's Knowledge Graph Boxes: killing Wikipedia?

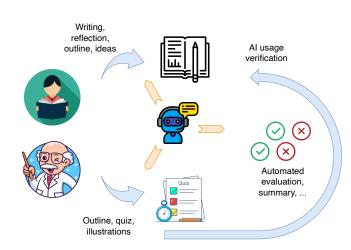


⇒ Who does benefit from the feedback? [StackOverFlow]

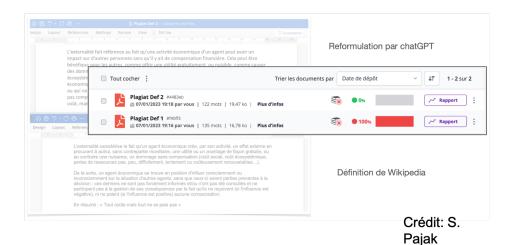
#### Risks of Al Generalization

 $\label{eq:Al_everywhere} \mbox{Al everywhere} = \\ \mbox{loss of meaning?}$ 

- In the educational domain
- Transposition to HR
- To project-based funding systems



### Detection of texts generated by chatGPT



### Detection of texts generated by chatGPT



Detect Al Plagiarism. Accurately





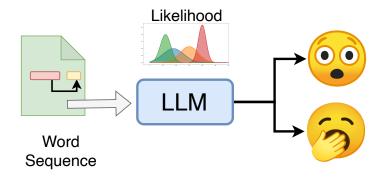
- **Text classifier** (like for any author)
  - Detection of biases in word choice / phrasing
- Characterization of text plausibility (OpenAl, GPTZero)
  - Hyper-fluency of sentences, over-abundance of logical connectors
  - Language model = statistical ⇒ measurement between distributions (perplexity)
- $\delta$ -plausibility on perturbed texts (DetectGPT)
- chatGPT should quickly integrate fingerprints in generated texts

Detectors  $\Rightarrow$  < 100% detection

+ confidence level in detection



### Detection of texts used by chatGPT



- Closed corpora ⇒ challenge of detection of texts used in training
- Detection of likelihood/surprise of observed word sequences



chatGPT

Uses

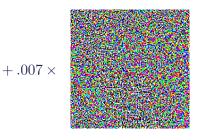
Gen. Al

### Attacking the algorithm

#### If an algorithm takes critical decision, it can be attacked!



x
"panda"
57.7% confidence



 $sign(\nabla_{\boldsymbol{x}}J(\boldsymbol{\theta},\boldsymbol{x},y))$  "nematode" 8.2% confidence



 $x + \epsilon sign(\nabla_x J(\theta, x, y))$  "gibbon" 99.3 % confidence



# Attacking the algorithm

If an algorithm takes critical decision, it can be attacked!

#### max speed 100

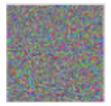




#### stop







Justin Johnson, Stanford CS231n





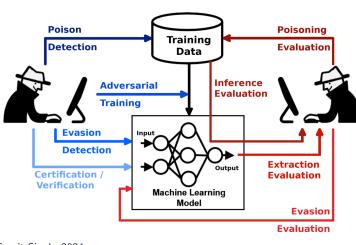




### Attacking the algorithm

#### If an algorithm takes critical decision, it can be attacked!

A typology to attack ML algorithms



Attacking data / diag

Knowing the model / gradient / nothing

How to protect?

Sumit Singh, 2024 68/87



## Introduct

### How to approach the ethics question?

#### Medicine

- 1 Autonomy: the patient must be able to make informed decisions.
- Beneficence: obligation to do good, in the interest of patients.
- Non-maleficence: avoid causing harm, assess risks and benefits.
- 4 **Equality:** fairness in the distribution of health resources and care.
- **5** Confidentiality: confidentiality of patient information.
- Truth and transparency: provide honest, complete, and understandable information.
- 7 Informed consent: obtain the free and informed consent of patients.
- Respect for human dignity: treat all patients with respect and dignity.

#### **Artificial Intelligence**

- 1 Autonomy: Humans control the process
- **Beneficence:** in the interest of whom? User + GAFAM...
- **3 Non-maleficence:** Humans + environment / sustainability / malicious uses
- 4 Equality: access to AI and equal opportunities
- **5 Confidentiality:** what about the Google/Facebook business model?
- **Truth and transparency:** the tragedy of modern AI
- 7 Informed consent: from cookies to algorithms, knowing when interacting with an Al
- **Respect for human dignity:** harassment behavior/ human-machine distinction



# **∠**∖⁻¨

### How to approach the ethics question?

#### Medicine

- 1 Autonomy: the patient must be able to make informed decisions.
- Beneficence: obligation to do good, in the interest of patients.
- **3 Non-maleficence:** avoid causing harm, assess risks and benefits.
- 4 **Equality:** fairness in the distribution of health resources and care.
- **5** Confidentiality: confidentiality of patient information.
- **Truth and transparency:** provide honest, complete, and understandable information.
- 7 Informed consent: obtain the free and informed consent of patients.
- Respect for human dignity: treat all patients with respect and dignity.

#### **Artificial Intelligence**

- 1 Autonomy: Humans control the process
- **Beneficence:** in the interest of whom? User + GAFAM...
- 3 Non-maleficence: Humans + environment / sustainability / malicious uses
- 4 Equality: access to Al and equal opportunities
- 5 Confidentiality: what about the Google/Facebook business model?
- Truth and transparency: the tragedy of modern AI
- 7 Informed consent: from cookies to algorithms, knowing when interacting with an AI
- **Respect for human dignity:** harassment behavior/ human-machine distinction

# LLM & CONSCIENCE

Généralisation Memoire Intentionalité Jugement Conscience de soi



### La conscience (par chatGPT)

- **Subjectivité** La conscience est intrinsèquement subjective. Chaque individu a sa propre perspective interne, un point de vue unique sur le monde.
- Intentionnalité La conscience est souvent dirigée vers quelque chose : un objet, une pensée, une sensation. Cela signifie qu'elle est intentionnelle, se focalisant sur des éléments spécifiques.
- **Réflexivité** La conscience permet à un individu de se reconnaître comme étant conscient. C'est la capacité à penser à ses propres pensées, à s'auto-évaluer et à se considérer comme un être distinct.
- **Unité** Malgré la multiplicité des sensations, pensées et émotions, la conscience tend à les unifier en une seule expérience cohérente.
- **Continuité** La conscience a un caractère temporel. Elle s'inscrit dans une continuité, reliant le passé, le présent et les projections futures.
- **Sentience** Il s'agit de la capacité à ressentir des émotions et des sensations. La conscience permet de vivre des expériences plaisantes ou douloureuses.
- **Libre arbitre** Certains considèrent que la conscience est associée au libre arbitre, c'est-à-dire la capacité de faire des choix délibérés, bien que cela fasse l'objet de débats philosophiques.

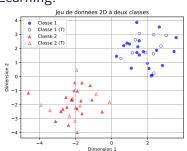
# GÉNÉRALISATION

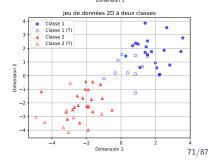


#### Pouvoir de Généralisation

La notion de généralisation est centrale en Machine Learning:

- Problème iid: indépendant et identiquement distribué
  - Sur-apprentissage, généralisation
  - Data-Augmentation, régularisation
- 2 Transfert d'apprentissage
  - Dépasser le cas iid, dérive des distributions
- 3 Multi-tâches, transfert de tâche
  - Apprendre à faire de nouvelles choses

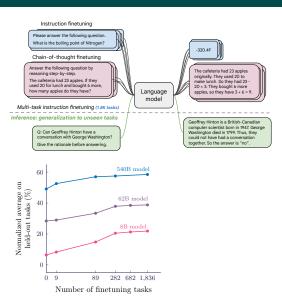






### Les LLM et la généralisation

- Que signifie iid dans les données textuelles?
  - Wikipedia, Reddit, Bioinformatique, Médecine, Finance, ...
- Multi-tâche & FLAN
- Du multi-tâche à la multimodalité



Intentionalité

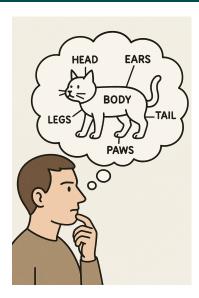


#### Approche analytique vs imitation

« Aujourd'hui, un système de deep learning n'est pas capable de raisonnement logique. [La machine] exécute sans avoir la moindre idée de ce qu'elle fait, et possède moins de sens commun qu'un chat de gouttière »

Selon lui, il faudrait 170 000 ans à un humain pour apprendre tous les tokens d'un grand modèle de langage (LLM). Pourtant, avec deux millions de fibres nerveuses optiques qui transfèrent l'équivalent de 10 bytes par seconde, un cerveau humain enregistre 50 fois plus de données qu'un LLM en 4 ans.

Yann LeCun



# ET RAISONNEMENT

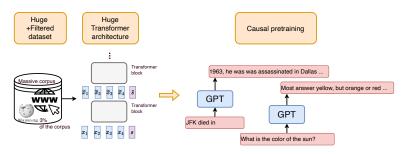
MÉMOIRE

CONNAISSANCES



### Les connaissances paramétriques

1 Construction



- Vocabulaire
- Grammaire
- Connaissance

Des connaissances imparfaites mais impressionnantes

- 2 Mesure: benchmark & métrique
- 3 Limites

### Les connaissances paramétriques

- 1 Construction
- 2 Mesure: benchmark & métrique
  - QA: Question Answering HotpotQA; 2WikiMultihopQA; MuSiQue; KQA Pro...
  - Formattage imposé, Regex, NLI pour la vérification des résultats

#### Paragraph A, Return to Olympus:

[1] Return to Olympus is the only allum by the alternative rock band Malfunkhun. [2] It was released after the band had broken up and after lead singer Andrew Wood (later of Mother Love Bone) had died of a drug overdose in 1990. [3] Stone Gossard, of Pearl Jam, had compiled the songs and released the album on his label, Loosegroove Records.

#### Paragraph B, Mother Love Bone:

[4] Mother Love Bone was an American rock band that formed in Seattle. Washington in 1987. [5] The band was active from 1987 to 1990. [6] Frontman Andrew Wood's personality and compositions helped to catagories the group to the top of the burgeoning late 1980s/early 1990s Seattle music scene. [7] Wood died only days before the scheduled release of the band's debut album, "Apple", thus ending the group's hopes of success. [8] The album was finally released a few months later.

Q: What was the former band of the member of Mother Love Bone who died just before the release of "Apple"? A: Malfunkshun

Supporting facts: 1, 2, 4, 6, 7



Figure 2: Types of questions covered in HOTPOTQA. Question types are extracted heuristically, starting at question words or prepositions preceding them. Empty colored blocks indicate suffixes that are too rare to show individually. See main text for more details.





### Les connaissances paramétriques

- 1 Construction
- 2 Mesure: benchmark & métrique
- 3 Limites
  - Hallucinations
  - Auto-évaluation / confiance problématiques
  - Quid des limites imposées aux LLM (politique etc...)



### Des bases de connaissances aux LLM

#### **Ontologies**

- Stockage (RDF, ...)
- Requêtage (SparQL)
- Raisonnement logique (Prolog, Pellet, Hermit, Elk)

#### Base de faits:

Barack Obama est né à Honolulu Honolulu est la capitale d'Hawaï

#### LLM

- Stockage implicite (paramètres)
- Requêtage en langage naturel mais instable
- Raisonnement = mimétisme des schémas vus en apprentissage : puissant mais imparfait

#### Base de règles:

est la capitale

est inclus dans

#### Moteur d'inférence:



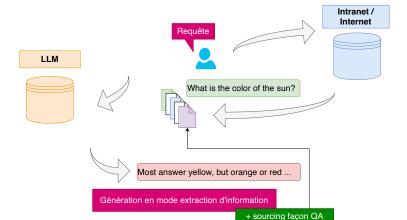


Barack Obama est né à Hawaï



### Couplage: RAG, Toolsformer, Raisonnement

- Chercher dans des documents plutot que dans sa mémoire [RAG]
- Faire appel à des outils externes [calculatrice, Web, appel SQL]
- Apprendre à raisonner
  - Difficile pour un modèle qui ne sait pas faire une opération mathématique
  - ... Mais plus facile quand on sait programmer



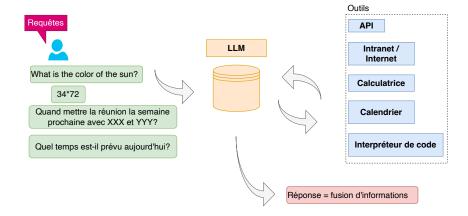


#### Intentionalité



### Couplage: RAG, Toolsformer, Raisonnement

- Chercher dans des documents plutot que dans sa mémoire [RAG]
- Faire appel à des outils externes [calculatrice, Web, appel SQL]
- Apprendre à raisonner
  - Difficile pour un modèle qui ne sait pas faire une opération mathématique
  - ... Mais plus facile quand on sait programmer



Généralisation Memoire ○ ○ ● ○ ○ Intentionalité Jugement Conscience de soi

### Couplage: RAG, Toolsformer, Raisonnement

- Chercher dans des documents plutot que dans sa mémoire [RAG]
- Faire appel à des outils externes [calculatrice, Web, appel SQL]
- Apprendre à raisonner
  - Difficile pour un modèle qui ne sait pas faire une opération mathématique
  - ... Mais plus facile quand on sait programmer

```
Task: Basic Math
Problem: Before December, customers buy 1346 ear muffs from the mall. During December, they buy 6444, and there are none. In all, how many ear muffs do the customers buy?

Predicted Answer: 1346.0 
Generated Program:

answer = 1346.0 + 6444.0 
print(answer)
# Result ==> 7790.0
```

```
Task: Muldiv
Problem: Tickets to the school
play cost 6 for students and 8 for
adults. If 20 students and 12 adults
bought tickets, how many dollars'
worth of tickets were sold?

Predicted Answer: 48 X
Generated Program:

a=20*6
b=12*8
c=a+b
answer=c
print(answer)
# Result ==> 216.0

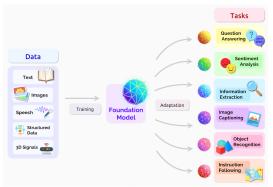
Gold Answer: 216 ✓
```

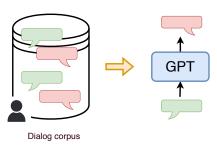


#### Unité et continuité

Deux domaines où les modèles ont le plus progressé... Mais on partait de 0 !

- Unité : vers des modèles de fondation
  - Loin de l'universalité (ou même des 5 sens)
- Continuité
  - Suivi de dialogue







#### Conclusion

- L'intelligence est-elle assimilable à du calcul?
- La logique est-elle indispensable?
- L'apprentissage sans logique est-il raisonnable?
  - Plus de livre qu'un humain n'en lira jamais, plus d'image qu'un humain n'en verra jamais...
  - *vs* esprit analytique
- Il existe d'autre forme d'intelligence que l'intelligence humaine... Mais l'intelligence est-elle la conscience?



## CRÉATIVITÉ

Intentionalité,

LIBRE ARBITRE,



### Généralisa

#### La conscience et l'intention

Tout ce qui est vivant à des intentions, des buts

- Libre arbitre
- Intentionalité

- Réponse à un prompt
- Suivi des commandes
- Initiatives: aller sur le web chercher une réponse

#### IA Forte / Artificial General Intelligence

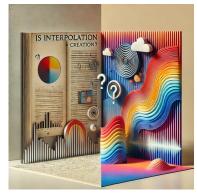
- Define Inputs & Outputs
- Break down into subtasks
- Build & test components (processing chain)
- Assert (limited) generalization (iid assumption)
- Performances Evaluation

- Augmented Generalization Capability (Universality)
- Autonomous Learning
  - Data/information access
  - Knowledge extraction (Training+Eval+Confidence/Trust)
- Reasoning
- Conscience, Intentionality

#### Créativité

La créativité est-elle menacée par les IA? Nécessite-elle de l'intention?

- L'interpolation entre deux éléments (textes, images, sons, ...) est-elle une création?
- Que se passe-t-il si la base d'interpolation est infinie?
- Les IA peuvent-elles apprendre à partir de données générées?



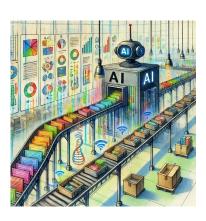
Les textes/images générés en IA sont nouveaux (peu de reprise mot à mot, de portion d'image copiée)

Les problématiques de droit d'auteur sont critiques



#### Intentionalité et accès à l'information

- Une IA n'est jamais neutre
  - Choix des données, présence des biais
  - Corrections manuelles, ligne éditoriale
- Un IA n'a pas d'intention... Si ce n'est une fonction objectif à minimiser
  - Comment est choisi cet objectif dans l'accès à l'information?
  - ⇒ Max. rétention des utilisateurs
  - ⇒ Bulles de pensées etc...



JUGEMENT DE VALEURS

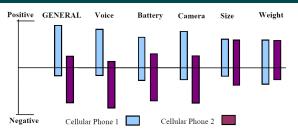
Subjectivité



#### Le machine learning peut il aborder des tâches subjectives

- Oui, lorsqu'on est capable de lui fournir des étiquettes
- ⇒ Opinion Mining dans les années 2005-2015





#### SENTIMENT ANALYSIS



Généralisation Memoire Intentionalité Jugement ○ ● ○ Conscience de soi



#### Bien/Mal, Beau/Laid

Une IA peut-elle emettre un jugement?

- Reproduction de règles vues en apprentissage
- ... Avec extension à des tâches proches
- Beaucoup de valeurs imposées
  - Ligne éditoriale absolument pas autonome

Les 3 lois de la robotiques imposées dans I. Asimov: répétées encore et encore jusqu'à assimilation



- Un robot ne peut porter atteinte à un être humain ni, restant passif, permettre qu'un être humain soit exposé au danger.
- 2 Un robot doit obéir aux ordres donnés par les êtres humains, sauf si de tels ordres entrent en contradiction avec la Première Loi.
- 3 Un robot doit protéger sa propre existence tant que cette protection n'entre pas en contradiction avec la Première ou la Deuxième Loi.

### Mais des usages concrets

- Les IA sont utilisées pour juger:
  - Qualité d'un résumé Automatique
  - Niveau de fluidité d'un texte...
- ⇒ On utilise des LLM pour ces tâches

#### Judging LLM-as-a-Judge with MT-Bench and Chatbot Arena

 $\label{eq:Lianmin Zheng} Lianmin Zheng^{1*} \quad Wei-Lin \ Chiang^{1*} \quad Ying \ Sheng^{4*} \quad Siyuan \ Zhuang^1$   $\ Zhuandaa \ Wu^1 \quad Vondhaa \ Zhuand^3 \quad Zi \ Lin^2 \quad Zhuahan \ Li^1 \quad Dacheng \ Li^1$ 

## Justice or Prejudice?

Jiayi Ye $^{\dagger,*}$ , Yanbo Wang $^{\dagger,*}$ , Yue Huang $^{\dagger,*}$ , Dongping Chen $^2$ , Qihui Zhang $^3$ , Nuno Moniz $^1$ , Tian Gao $^4$ , Werner Geyer $^4$ , Chao Huang $^5$ , Pin-Yu Chen $^4$ , Nitesh V. Chawla $^1$ , Xiangliang Zhang $^{1,\ddagger}$ 

# Conscience de soi

Généralisation Memoire Intentionalité Jugement Conscience de soi



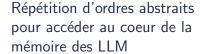
#### L'IA a-t-elle conscience d'elle-même?

#### A priori, pas du tout... Mais:

Google licencie un ingénieur après sa discussion troublante avec une IA : elle avait peur d'être débranchée







Beaucoup de neurones dont les fonctions ne sont pas établies



#### Comment qualifier les deadbots?

- LLM assimilant les données d'une personne décédée
- 2 Humain dialoguat avec la personne en question
- Risque important mais aussi outil pour faire son deuil

Forum européen de bioéthique Deuil et intelligence artificielle : faut-il avoir peur des «deadbots» ?

Quel humain pour demain ? dossier ~



Généralisation

Memoire

#### Conclusion

- **Subjectivité** La conscience est intrinsèquement subjective. Chaque individu a sa propre perspective interne, un point de vue unique sur le monde.
- Intentionnalité La conscience est souvent dirigée vers quelque chose : un objet, une pensée, une sensation. Cela signifie qu'elle est intentionnelle, se focalisant sur des éléments spécifiques.
- **Réflexivité** La conscience permet à un individu de se reconnaître comme étant conscient. C'est la capacité à penser à ses propres pensées, à s'auto-évaluer et à se considérer comme un être distinct.
- 4 Unité Malgré la multiplicité des sensations, pensées et émotions, la conscience tend à les unifier en une seule expérience cohérente.
- **Continuité** La conscience a un caractère temporel. Elle s'inscrit dans une continuité, reliant le passé, le présent et les projections futures.
- **Sentience** Il s'agit de la capacité à ressentir des émotions et des sensations. La conscience permet de vivre des expériences plaisantes ou douloureuses.
- **TLibre arbitre** Certains considèrent que la conscience est associée au libre arbitre, c'est-à-dire la capacité de faire des choix délibérés, bien que cela fasse l'objet de débats philosophiques.