

Time Series Continuous Modeling for Imputation and Forecasting with Implicit Neural Representations

Vincent Guigue - AgroParisTech

Time Series : continuous phenomena / observed partially

Technical options for continuous modeling

- Gaussian Processes [Williams & Rasmussen, 2006] / Neural Processes [Kim et al. 2019]
- Diffusion Model [Ho et al. 2020]
- Implicit Neural Representation (INR) [Dupont et al. 2022]

Technical options for continuous modeling

- Gaussian Processes [Williams & Rasmussen, 2006] / Neural Processes [Kim et al. 2019]
- Diffusion Model [Ho et al. 2020]
- Implicit Neural Representation (INR) [Dupont et al. 2022]

Dealing with Multiple Time Series : HyperNetwork architecture

HyperNet

- 1 TS = 1 code z
- Linear mapping
- Generate specific b

INR = 1 time series

- Fixed 1st layer (Fourier)
- MLP : shared θ / specific b

Dealing with Multiple Time Series : Hypernetwork architecture

Disord e methods

Results: it works in a very diverse range of situations

- .

Imputatio	on						T ™	eFlav	DeepTime	mTAN	Neural Proces	s CSD	S	A/TS I	RTS	TIDER
Long range forecasting Forecasting from incomplete data						Betroity	0.05 0.324 0.10 0.250 0.20 0.225 0.30 0.212 0.50 0.194	± 0.013 0 ± 0.010 0 ± 0.008 0 ± 0.007 0 ± 0.007 0	0.379 ± 0.037 0.333 ± 0.034 0.244 ± 0.013 0.240 ± 0.014 0.227 ± 0.012	0.575 ± 0.08 0.412 ± 0.04 0.342 ± 0.01 0.335 ± 0.01 0.340 ± 0.02	9 0.357 ± 0.015 7 0.417 ± 0.057 4 0.320 ± 0.017 5 0.300 ± 0.022 2 0.297 ± 0.016	0.462 ± 0 0.368 ± 0 0.341 ± 0 0.277 ± 0 0.168 ± 0	021 0.384 072 0.308 068 0.261 059 0.236 003 0.236	± 0.019 0.32 ± 0.011 0.28 ± 0.008 0.24 ± 0.008 0.22 ± 0.008 0.19	0 ± 0015 7 ± 0015 5 ± 0011 1 ± 0008 3 ± 0008	0.427 ± 0.010 0.399 ± 0.009 0.391 ± 0.010 0.384 ± 0.009 0.386 ± 0.009
						Solar	0.05 0.095 0.10 0.083 0.20 0.072	± 0.015 0 ± 0.015 0 ± 0.015 0	0.190 ± 0.020 159 ± 0.013 0.149 ± 0.020	0241 ± 0.10 0251 ± 0.08 0314 ± 0.03 0.338 ± 0.02	$\begin{array}{c} 2 & \underline{0.115 \pm 0.015} \\ 1 & \underline{0.114 \pm 0.016} \\ 5 & \underline{0.109 \pm 0.016} \\ 5 & \underline{0.108 \pm 0.016} \end{array}$	0.374 ± 0 0.375 ± 0 0.217 ± 0 0.156 ± 0	033 0.142 038 0.124 023 0.108 002 0.100	± 0.016 0.16 ± 0.018 0.13 ± 0.014 0.10 ± 0.015 0.08	5 ± 0014 2 ± 0015 9 ± 0012 8 ± 0012	0.291 ± 0.009 0.276 ± 0.010 0.270 ± 0.010 0.260 ± 0.010
		TimeFlow			DeepTime		Neural Process		013	U315± UUB		1 0.015 0.079 ± 001		± 0.013 0.08	5 ± 10013	13 0.262 ± 0.009
	н	Ð	Imputation error	Forecast error	Imputation error	Forecast error	Imputation error	Forecast	terror par	0.406 ± 0.07 0.319 ± 0.02	4 0.318 ± 0.014 5 0.288 ± 0.018	0.337 ± 0	046 0.293 017 0.237	± 0.000 0.28	1 ± 0010 5 ± 0009	0.365 ± 0.007
Electricity	96	05	0.151 ± 0.003 0.208 ± 0.006 0.272 ± 0.006	0 239 ± 0 013 0 260 ± 0 015 0 295 ± 0 016	0 209 ± 0.004 0 249 ± 0.006 0 284 ± 0.007	0.270 ± 0.019 0.296 ± 0.023 0.324 ± 0.026	0.460 ± 0.048 0.644 ± 0.079 0.740 ± 0.083	0.486 ± 0.650 ± 0.737 ±	0.078 008 0.095 0.106	0.270 ± 0.01	2 0.271 ± 0.011	0.289 ± 0 Discrete metho	017 0.197 xds	± 0.005 0.22	± 0.008 ± 0.007 ± 0.080	0.361 ± 0.006 0.355 ± 0.006 0.354 ± 0.007
	192	0.5	0.149 ± 0.004 0.209 ± 0.006 0.274 ± 0.010	0.235 ± 0.011 0.257 ± 0.013 0.289 ± 0.016	0.204 ± 0.004 0.244 ± 0.007 0.282 ± 0.007	0.265 ± 0.018 0.290 ± 0.023 0.315 ± 0.025	0.461 ± 0.045 0.601 ± 0.075 0.461 ± 0.045	0.498 ± 0.626 ± 0.724 ±	0.070 d P 0.101 d ± 0.090 ±	0.045 0.214 s 0.046 0.225 s	TST DLi 0.020 0.238 = 0.017 0.248 =	0.026 0.310 0.032 0.32	oFormer 0 ± 0.031 2 ± 0.040	Informer 0.293 ± 0.0184 0.335 ± 0.032	90 %	53.40 %
Traffic	96	0.5	0.180 ± 0.016 0.239 ± 0.019 0.312 ± 0.020	0.219 ± 0.026 0.243 ± 0.027 0.290 ± 0.027	0.272 ± 0.028 0.335 ± 0.026 0.385 ± 0.025	0.243 ± 0.030 0.293 ± 0.027 0.344 ± 0.027	0.436 ± 0.025 0.596 ± 0.049 0.734 ± 0.102	0.444 ± 0.597 ± 0.731 ±	0.047 ± 0.075 ± 0.132 ±	0.075 0.242 ± 0.149 0.291 ± 0.048 0.232 ±	t 0.024 0.284 t t 0.040 0.370 t t 0.008 0.204 t	0.043 0.330 0.096 0.460 0.002 0.26	0± 0.019 3± 0.062 1± 0.053	0.405 ± 0.044 0.489 ± 0.072 0.273 ± 0.023	-	
	192	0.5 0.2 0.1	0.176 ± 0.014 0.233 ± 0.017 0.304 ± 0.019	0.217 ± 0.017 0.236 ± 0.021 0.277 ± 0.021	0.241 ± 0.027 0.296 ± 0.027 0.331 ± 0.025	0.234 ± 0.021 0.276 ± 0.020 0.324 ± 0.021	0.477 ± 0.042 0.685 ± 0.109 0.888 ± 0.178	0.476 ± 0.678 ± 0.877 ±	0.043 ± 0.108 ± 0.174 ±	0.048 0.231 ± 0.005 0.254 ± 0.147 0.271 ±	1 0.027 0.211 1 1 0.046 0.212 1 1 0.036 0.246 1	0.012 0.312 0.019 0.34 0.015 0.38	2± 0.085 1± 0.107 3± 0.006	0.256 ± 0.026 0.287 ± 0.006 0.341 ± 0.049		
TimeFlow improvement			1	1	18.97 %	11.87 %	61.88 %	58.41	³ ∕₀ ± +	0.028 0.201 :	0.031 0.225 1	0.034 0.295	080.0 ± 0.080 0 ± 0.030	0.324 ± 0.113 0.321 ± 0.052		
						33 72	86 <u>0.237 ± 0.040</u> 20 0.268 ± 0.048	0.247 ± 0.0 0.290 ± 0.0	33 0.305 ± 45 0.339 ±	0.039 0.220 1	0.038 0.244 s	0.025 0.450	0± 0.127 0± 0.043	0.394 ± 0.086 0.441 ± 0.065		
					TimeFi	ow improvement	1	0.50 %	30.75	% 2.0	4% 73	D%⊧ 34	5.43.%	33.07 %		
															-	

Continuous methods

Conclusion: A path towards foundation models for time series

A way to learn semantic representations

Connections with diffusion models

Data generation/augmentation

Time Series Continuous Modeling for Imputation and Forecasting with Implicit Neural Representations

Etienne Le Naour^{* 1,2}, Louis Serrano^{* 1}, Léon Migus^{* 1,3}, Yuan Yin¹, Ghislain Agoua² Nicolas Baskiotis¹, Patrick Gallinari^{1,4}, Vincent Guigue⁵ ¹ Sorbonne Université, CNRS, ISIR, 75005 Paris, France ² EDF R&D, Palaiseau, France ³ Sorbonne Université, CNRS, Laboratoire Jacques-Louis Lions, 75005 Paris, France ⁴ Criteo AI Lab, Paris, France ⁵ AgroParisTech, Palaiseau, France {louis.serrano, leon.migus, yuan.yin, nicolas.baskiotis, vincent.guigue}@sorbonne-universite.fr {etienne.le-naour, ghislain.agoua}@edf.fr

