
Time Series Continuous Modeling 

for Imputation and Forecasting with
Implicit Neural Representations

Vincent Guigue - AgroParisTech



Time Series : continuous phenomena / observed partially

Text



Technical options for continuous modeling

• Gaussian Processes [Williams & Rasmussen, 2006] / Neural Processes [Kim et al. 2019]

• Diffusion Model [Ho et al. 2020]
• Implicit Neural Representation (INR) [Dupont et al. 2022]

From data to functa: Your data point isa function

and you can treat it likeone
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Abstract

It is common practice in deep learning to repre-

sent ameasurement of theworld on adiscretegrid,

e.g. a2D grid of pixels. However, the underlying

signal represented by thesemeasurements isoften

continuous, e.g. the scene depicted in an image.

A powerful continuousalternative is then to repre-

sent these measurements using an implicit neural

representation, aneural function trained to output

the appropriate measurement value for any input

spatial location. In this paper, we take this idea to

its next level: what would it take to perform deep

learning on these functions instead, treating them

as data? In this context we refer to the data as

functa, and propose a framework for deep learn-

ing on functa. This view presents a number of

challenges around efficient conversion from data

to functa, compact representation of functa, and

effectively solving downstream tasks on functa.

Weoutline a recipe to overcome these challenges

and apply it to a wide range of data modalities in-

cluding images, 3D shapes, neural radiance fields

(NeRF) and data on manifolds. We demonstrate

that this approach has various compelling prop-

erties across datamodalities, in particular on the

canonical tasks of generativemodeling, data im-

putation, novel view synthesis and classification.

Code: gi t hub.com/ deepmi nd/ f unct a .

1. Introduction

In deep learning, data is traditionally represented by ar-

rays. For example, images are represented by their pixel

intensities, and 3D shapes by voxel occupancies, both at a

discrete set of grid coordinates tied to a particular resolu-
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Figure 1. We convert array data into functional data parameterized

by neural networks, termed functa, and treat these as data points

for various downstream machine learning tasks.

tion. However, the underlying signal represented by these

arrays is often continuous. It is therefore natural to consider

representing such data with continuous quantities.

Recently, the idea of modelling data with continuous func-

tions has gained popularity. An image, for example, can

be represented by a continuous function mapping 2D pixel

coordinates to RGB values. When such a function is param-

eterized by a neural network, it is typically referred to as

an implicit neural representation (INR). INRs are generally

applicable to awide range of modalities – indeed, various

workshavedemonstrated that INRscan beused to represent

images (Stanley, 2007; Ha, 2016), 3D shapes (Mescheder

et al., 2019; Chen & Zhang, 2019), signed distance func-

tions (Park et al., 2019), videos (Li et al., 2021), 3D scenes

(Mildenhall et al., 2020), audio (Sitzmann et al., 2020b) and

data on manifolds (Dupont et al., 2021b). This functional

representation offers a number of advantages over array

representations. It allows for dealing with data at arbitrary

resolutions, as well as data that isdifficult to discretize such

as neural radiance fields (NeRF) for 3D scene representa-

tion (Mildenhall et al., 2020). Parameterizing such functions

as neural networks offers additional advantages, in terms

of memory-efficiency and as asingle architecture that can

represent different data modalities.

In light of these advantages, wepropose anew framework

that 1. converts array data to functional data parameterized

by neural networks, and 2. performs deep learning tasks
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Dealing with Multiple Time Series : HyperNetwork architecture

INR  = 1 time series
• Fixed 1st layer (Fourier)
• MLP : shared θ / specific b

HyperNet
• 1 TS = 1 code z
• Linear mapping

• Generate specific b



Dealing with Multiple Time Series : Hypernetwork architecture

1. Observations

2. Determining code z

3. Inputation + Forcasting

Inference:



Results: it works in a very diverse range of situations

• Imputation
• Long range forecasting

• Forecasting from incomplete data



Conclusion: A path towards foundation models for time series

A way to learn semantic representations

Connections with diffusion models

Data generation/augmentation
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