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Time Series = continuous phenomena / observed partially

Modeling Time Series as a continuous function
⇒ Deal with irregular sampling / unaligned sensors
⇒ Unified framework for Data imputation + Forecasting

Irregular 
samples

Unaligned
sensors

Unaligned train
and test setting
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Technical options

Gaussian Processes [Williams and Rasmussen, 2006]

Neural Processes [Kim et al., 2019]

Specific Architecture (e.g. mTAN) [Shukla and Marlin, 2021]

Diffusion Model [Ho et al., 2020]

Implicit Neural Representation (INR) [Dupont et al., 2022]

From data to functa: Your data point is a function
and you can treat it like one

Emilien Dupont * 1 Hyunjik Kim * 2 S. M. Ali Eslami 2 Danilo Rezende 2 Dan Rosenbaum 3 2

Abstract
It is common practice in deep learning to repre-
sent a measurement of the world on a discrete grid,
e.g. a 2D grid of pixels. However, the underlying
signal represented by these measurements is often
continuous, e.g. the scene depicted in an image.
A powerful continuous alternative is then to repre-
sent these measurements using an implicit neural
representation, a neural function trained to output
the appropriate measurement value for any input
spatial location. In this paper, we take this idea to
its next level: what would it take to perform deep
learning on these functions instead, treating them
as data? In this context we refer to the data as
functa, and propose a framework for deep learn-
ing on functa. This view presents a number of
challenges around efficient conversion from data
to functa, compact representation of functa, and
effectively solving downstream tasks on functa.
We outline a recipe to overcome these challenges
and apply it to a wide range of data modalities in-
cluding images, 3D shapes, neural radiance fields
(NeRF) and data on manifolds. We demonstrate
that this approach has various compelling prop-
erties across data modalities, in particular on the
canonical tasks of generative modeling, data im-
putation, novel view synthesis and classification.
Code: github.com/deepmind/functa.

1. Introduction
In deep learning, data is traditionally represented by ar-
rays. For example, images are represented by their pixel
intensities, and 3D shapes by voxel occupancies, both at a
discrete set of grid coordinates tied to a particular resolu-

*Equal contribution: author order determined by coin flip.
1University of Oxford 2DeepMind 3University of Haifa.
Correspondence to: Emilien Dupont <dupont@stats.ox.ac.uk>,
Hyunjik Kim <hyunjikk@google.com>.

Proceedings of the 39 th International Conference on Machine
Learning, Baltimore, Maryland, USA, PMLR 162, 2022.
Copyright 2022 by the author(s).

Generative modeling Inference Classification

Figure 1. We convert array data into functional data parameterized
by neural networks, termed functa, and treat these as data points
for various downstream machine learning tasks.

tion. However, the underlying signal represented by these
arrays is often continuous. It is therefore natural to consider
representing such data with continuous quantities.

Recently, the idea of modelling data with continuous func-
tions has gained popularity. An image, for example, can
be represented by a continuous function mapping 2D pixel
coordinates to RGB values. When such a function is param-
eterized by a neural network, it is typically referred to as
an implicit neural representation (INR). INRs are generally
applicable to a wide range of modalities – indeed, various
works have demonstrated that INRs can be used to represent
images (Stanley, 2007; Ha, 2016), 3D shapes (Mescheder
et al., 2019; Chen & Zhang, 2019), signed distance func-
tions (Park et al., 2019), videos (Li et al., 2021), 3D scenes
(Mildenhall et al., 2020), audio (Sitzmann et al., 2020b) and
data on manifolds (Dupont et al., 2021b). This functional
representation offers a number of advantages over array
representations. It allows for dealing with data at arbitrary
resolutions, as well as data that is difficult to discretize such
as neural radiance fields (NeRF) for 3D scene representa-
tion (Mildenhall et al., 2020). Parameterizing such functions
as neural networks offers additional advantages, in terms
of memory-efficiency and as a single architecture that can
represent different data modalities.

In light of these advantages, we propose a new framework
that 1. converts array data to functional data parameterized
by neural networks, and 2. performs deep learning tasks
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Implicit Neural Representation : a versatile solution

Image compression [Dupont et al., 2021]

3D / animation modeling [Peng et al., 2021]

Neural Body: Implicit Neural Representations with Structured Latent Codes
for Novel View Synthesis of Dynamic Humans

Sida Peng1 Yuanqing Zhang1 Yinghao Xu2 Qianqian Wang3

Qing Shuai1 Hujun Bao1 Xiaowei Zhou1∗

1Zhejiang University 2The Chinese University of Hong Kong 3Cornell University

Input: a sparse multi-view video

Frame 1 Frame 150 Frame 300

Output: 3D geometry and appearance

Novel view synthesis 3D reconstruction

Figure 1: Novel view synthesis of a performer from a sparse multi-view video. Neural Body captures the 3D geometry and
appearance of the performer, which can be used for 3D reconstruction and novel view synthesis. The code and supplementary
materials are available at https://zju3dv.github.io/neuralbody/.

Abstract

This paper addresses the challenge of novel view synthe-
sis for a human performer from a very sparse set of cam-
era views. Some recent works have shown that learning
implicit neural representations of 3D scenes achieves re-
markable view synthesis quality given dense input views.
However, the representation learning will be ill-posed if
the views are highly sparse. To solve this ill-posed prob-
lem, our key idea is to integrate observations over video
frames. To this end, we propose Neural Body, a new hu-
man body representation which assumes that the learned
neural representations at different frames share the same
set of latent codes anchored to a deformable mesh, so that
the observations across frames can be naturally integrated.
The deformable mesh also provides geometric guidance for
the network to learn 3D representations more efficiently.
To evaluate our approach, we create a multi-view dataset
named ZJU-MoCap that captures performers with complex
motions. Experiments on ZJU-MoCap show that our ap-
proach outperforms prior works by a large margin in terms
of novel view synthesis quality. We also demonstrate the
capability of our approach to reconstruct a moving person
from a monocular video on the People-Snapshot dataset.

The authors from Zhejiang University are affiliated with the State Key
Lab of CAD&CG. ∗Corresponding author: Xiaowei Zhou.

1. Introduction

Free-viewpoint videos of human performers have a vari-
ety of applications such as movie production, sports broad-
casting, and telepresence. Previous free-viewpoint video
systems either rely on a dense array of cameras for image-
based novel view synthesis [20, 23] or require depth sen-
sors for high-quality 3D reconstruction [8, 14] to produce
realistic rendering. The complicated hardware makes free-
viewpoint video systems expensive and only applicable in
constrained environments.

This work focuses on the problem of novel view synthe-
sis for a human performer from a sparse multi-view video
captured by a very limited number of cameras, as illustrated
in Figure 1. This setting significantly decreases the cost of
free-viewpoint systems and makes the systems more widely
applicable. However, this problem is extremely challeng-
ing. Traditional image-based rendering methods [20, 12]
mostly require dense input views and cannot be applied
here. For reconstruction-based methods [54, 22], the wide
baselines between cameras make dense stereo matching in-
tractable. Moreover, part of the human body may be invisi-
ble due to self-occlusion in sparse views. As a result, these
methods tend to give noisy and incomplete reconstructions,
resulting in heavy rendering artifacts.

Recent works [58, 47, 44] have investigated the poten-
tial of implicit neural representations on novel view synthe-
sis. NeRF [44] shows that photorealistic view synthesis can

19054

3D Scene / multiscale representation [Jiang et al., 2020]

Local Implicit Grid Representations for 3D Scenes

Chiyu “Max” Jiang1,2 Avneesh Sud2 Ameesh Makadia2 Jingwei Huang2,3

Matthias Nießner4 Thomas Funkhouser2

1UC Berkeley 2Google Research 3Stanford University 4Technical University of Munich
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(a) Training parts from ShapeNet. (b) t-SNE plot of part embeddings. (c) Reconstructing entire scenes with Local Implicit Grids

Figure 1: We learn an embedding of parts from objects in ShapeNet [3] using a part autoencoder with an implicit decoder. We show that
this representation of parts is generalizable across object categories, and easily scalable to large scenes. By localizing implicit functions in
a grid, we are able to reconstruct entire scenes from points via optimization of the latent grid.

Abstract

Shape priors learned from data are commonly used to re-
construct 3D objects from partial or noisy data. Yet no such
shape priors are available for indoor scenes, since typical
3D autoencoders cannot handle their scale, complexity, or
diversity. In this paper, we introduce Local Implicit Grid
Representations, a new 3D shape representation designed
for scalability and generality. The motivating idea is that
most 3D surfaces share geometric details at some scale –
i.e., at a scale smaller than an entire object and larger than
a small patch. We train an autoencoder to learn an embed-
ding of local crops of 3D shapes at that size. Then, we use
the decoder as a component in a shape optimization that
solves for a set of latent codes on a regular grid of overlap-
ping crops such that an interpolation of the decoded local
shapes matches a partial or noisy observation. We demon-
strate the value of this proposed approach for 3D surface
reconstruction from sparse point observations, showing sig-
nificantly better results than alternative approaches.

1. Introduction

Geometric representation for scenes has been central to
various tasks in computer vision and graphics, including ge-
ometric reconstruction, compression, and higher-level tasks
such as scene understanding, object detection and segmen-
tation. An effective representation should generalize well
across a wide range of semantic categories, scale efficiently
to large scenes, exhibit a rich expressive capacity for rep-
resenting sharp features and complex topologies, and at the
same time leverage learned geometric priors acquired from
data.

In the last years, several works have proposed new net-
work architectures to allow conventional geometric rep-
resentations such as point clouds [31, 13, 43], meshes
[37, 15], and voxel grids [9, 40] to leverage data priors.
More recently, a neural implicit representation [4, 28, 29]
has been proposed as an alternative to these approaches for
its expressive capacity for representing fine geometric de-
tails. However, the aforementioned works focus on learn-
ing representations for whole objects within one or a few
categories, and they have not been studied in the context of
generalizing to other categories, or scaling to large scenes.

16001
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Implicit Neural Representation for Time Series

A first attempt: DeepTime [Woo et al., 2022]

Room for improvement:

Not designed for data imputation (forecasting only)
≈ Ridge Regression on sampled Fourier descriptors

Texte

5/35
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NeRF encoding illustration [Mildenhall et al., 2021]

1 NeRF encoding : t → γ(t) ⇒ Fixed frequency description
6/35
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NeRF encoding illustration [Mildenhall et al., 2021]

1 NeRF encoding : t → γ(t), N frequency bands
γ(t) := (sin(πt), cos(πt), · · · , sin(2Nπt), cos(2Nπt))

2 Then γ(t) → MLP(γ(t); θ) (vs ≈ Ridge Reg. in [Woo et al., 2022])
Activation functions are ReLU (i.e. ReLU(x) = max(0, x))

6/35
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NeRF encoding illustration [Mildenhall et al., 2021]

γ(t) := (sin(πt), cos(πt), · · · , sin(2Nπt), cos(2Nπt))
6/35
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Nice to fit a sample, but how to deal with a dataset?

Solution → Hypernetwork that modulate the INR
[Dupont et al., 2022, Klocek et al., 2019, Sitzmann et al., 2020]

7/35
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Hypernetwork and auto-decoding [Dupont et al., 2022, Yin et al., 2022]

HyperNet =
linear model ⇒ bias b

INR =
fixed 1st layer +

MLP with θ (in) +
b (modul.)

8/35
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Insight on parameters θ, w and the z (j)

γ(t)(= ϕ0) ∈ R64, z (j) ∈ R128

ϕℓ>0 ∈ R256

MLP: 5 layer

z (j): instance coding

θ and w = shared information across all
samples

MSE Loss

Training: [Zintgraf et al., 2019]
inner+outer loops

i) Sample adaptation =
freeze (θ,w) + 3 grad. steps on z (j)

[Second order grad. (Hessien comput.)]

o) (θ,w) optimization

Inference: i) + forward
not so fast...
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Several research questions

γ(t)(= ϕ0) ∈ R64, z (j) ∈ R128

ϕℓ>0 ∈ R256

MLP: 5 layer

1 How to link between hypernet. & INR?

Stability

2 Impact of grad. in the inner loop?

Stability
Comp. time

3 INR:

How to map t in input?
Impact of non-linearity of the INR

10/35
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Imputation

Training

Inference
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We compare to a wide range of baselines on three datasets

Table 1: Mean MAE imputation results on the missing grid only. τ stands for the
subsampling rate. Bold results are best, underlined results are second best.

Continuous methods Discrete methods

τ TimeFlow DeepTime mTAN Neural Process CSDI SAITS BRITS TIDER

0.05 0.324 ± 0.013 0.379 ± 0.037 0.575 ± 0.039 0.357 ± 0.015 0.462 ± 0.021 0.384 ± 0.019 0.329 ± 0.015 0.427 ± 0.010
0.10 0.250 ± 0.010 0.333 ± 0.034 0.412 ± 0.047 0.417 ± 0.057 0.398 ± 0.072 0.308 ± 0.011 0.287 ± 0.015 0.399 ± 0.009

Electricity 0.20 0.225 ± 0.008 0.244 ± 0.013 0.342 ± 0.014 0.320 ± 0.017 0.341 ± 0.068 0.261 ± 0.008 0.245 ± 0.011 0.391 ± 0.010
0.30 0.212 ± 0.007 0.240 ± 0.014 0.335 ± 0.015 0.300 ± 0.022 0.277 ± 0.059 0.236 ± 0.008 0.221 ± 0.008 0.384 ± 0.009
0.50 0.194 ± 0.007 0.227 ± 0.012 0.340 ± 0.022 0.297 ± 0.016 0.168 ± 0.003 0.209 ± 0.008 0.193 ± 0.008 0.386 ± 0.009

0.05 0.095 ± 0.015 0.190 ± 0.020 0.241 ± 0.102 0.115 ± 0.015 0.374 ± 0.033 0.142 ± 0.016 0.165 ± 0.014 0.291 ± 0.009
0.10 0.083 ± 0.015 0.159 ± 0.013 0.251 ± 0.081 0.114 ± 0.014 0.375 ± 0.038 0.124 ± 0.018 0.132 ± 0.015 0.276 ± 0.010

Solar 0.20 0.072 ± 0.015 0.149 ± 0.020 0.314 ± 0.035 0.109 ± 0.016 0.217 ± 0.023 0.108 ± 0.014 0.109 ± 0.012 0.270 ± 0.010
0.30 0.061 ± 0.012 0.135 ± 0.014 0.338 ± 0.05 0.108 ± 0.016 0.156 ± 0.002 0.100 ± 0.015 0.098 ± 0.012 0.266 ± 0.010
0.50 0.054 ± 0.013 0.098 ± 0.013 0.315 ± 0.080 0.107 ± 0.015 0.079 ± 0.011 0.094 ± 0.013 0.088 ± 0.013 0.262 ± 0.009

0.05 0.283 ± 0.016 0.246 ± 0.010 0.406 ± 0.074 0.318 ± 0.014 0.337 ± 0.045 0.293 ± 0.007 0.261 ± 0.010 0.363 ± 0.007
0.10 0.211 ± 0.012 0.214 ± 0.007 0.319 ± 0.025 0.288 ± 0.018 0.288 ± 0.017 0.237 ± 0.006 0.245 ± 0.009 0.362 ± 0.006

Traffic 0.20 0.168 ± 0.006 0.216 ± 0.006 0.270 ± 0.012 0.271 ± 0.011 0.269 ± 0.017 0.197 ± 0.005 0.224 ± 0.008 0.361 ± 0.006
0.30 0.151 ± 0.007 0.172 ± 0.008 0.251 ± 0.006 0.259 ± 0.012 0.240 ± 0.037 0.180 ± 0.006 0.197 ± 0.007 0.355 ± 0.006
0.50 0.139 ± 0.007 0.171 ± 0.005 0.278 ± 0.040 0.240 ± 0.021 0.144 ± 0.022 0.160 ± 0.008 0.161 ± 0.060 0.354 ± 0.007

TimeFlow improvement / 24.14 % 50.53 % 31.61 % 36.12 % 20.33 % 18.90 % 53.40 %
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We compare to a wide range of baselines on three datasets

Table 1: Mean MAE imputation results on the missing grid only. τ stands for the
subsampling rate. Bold results are best, underlined results are second best.

Continuous methods Discrete methods

τ TimeFlow DeepTime mTAN Neural Process CSDI SAITS BRITS TIDER

0.05 0.324 ± 0.013 0.379 ± 0.037 0.575 ± 0.039 0.357 ± 0.015 0.462 ± 0.021 0.384 ± 0.019 0.329 ± 0.015 0.427 ± 0.010
0.10 0.250 ± 0.010 0.333 ± 0.034 0.412 ± 0.047 0.417 ± 0.057 0.398 ± 0.072 0.308 ± 0.011 0.287 ± 0.015 0.399 ± 0.009

Electricity 0.20 0.225 ± 0.008 0.244 ± 0.013 0.342 ± 0.014 0.320 ± 0.017 0.341 ± 0.068 0.261 ± 0.008 0.245 ± 0.011 0.391 ± 0.010
0.30 0.212 ± 0.007 0.240 ± 0.014 0.335 ± 0.015 0.300 ± 0.022 0.277 ± 0.059 0.236 ± 0.008 0.221 ± 0.008 0.384 ± 0.009
0.50 0.194 ± 0.007 0.227 ± 0.012 0.340 ± 0.022 0.297 ± 0.016 0.168 ± 0.003 0.209 ± 0.008 0.193 ± 0.008 0.386 ± 0.009

0.05 0.095 ± 0.015 0.190 ± 0.020 0.241 ± 0.102 0.115 ± 0.015 0.374 ± 0.033 0.142 ± 0.016 0.165 ± 0.014 0.291 ± 0.009
0.10 0.083 ± 0.015 0.159 ± 0.013 0.251 ± 0.081 0.114 ± 0.014 0.375 ± 0.038 0.124 ± 0.018 0.132 ± 0.015 0.276 ± 0.010

Solar 0.20 0.072 ± 0.015 0.149 ± 0.020 0.314 ± 0.035 0.109 ± 0.016 0.217 ± 0.023 0.108 ± 0.014 0.109 ± 0.012 0.270 ± 0.010
0.30 0.061 ± 0.012 0.135 ± 0.014 0.338 ± 0.05 0.108 ± 0.016 0.156 ± 0.002 0.100 ± 0.015 0.098 ± 0.012 0.266 ± 0.010
0.50 0.054 ± 0.013 0.098 ± 0.013 0.315 ± 0.080 0.107 ± 0.015 0.079 ± 0.011 0.094 ± 0.013 0.088 ± 0.013 0.262 ± 0.009

0.05 0.283 ± 0.016 0.246 ± 0.010 0.406 ± 0.074 0.318 ± 0.014 0.337 ± 0.045 0.293 ± 0.007 0.261 ± 0.010 0.363 ± 0.007
0.10 0.211 ± 0.012 0.214 ± 0.007 0.319 ± 0.025 0.288 ± 0.018 0.288 ± 0.017 0.237 ± 0.006 0.245 ± 0.009 0.362 ± 0.006

Traffic 0.20 0.168 ± 0.006 0.216 ± 0.006 0.270 ± 0.012 0.271 ± 0.011 0.269 ± 0.017 0.197 ± 0.005 0.224 ± 0.008 0.361 ± 0.006
0.30 0.151 ± 0.007 0.172 ± 0.008 0.251 ± 0.006 0.259 ± 0.012 0.240 ± 0.037 0.180 ± 0.006 0.197 ± 0.007 0.355 ± 0.006
0.50 0.139 ± 0.007 0.171 ± 0.005 0.278 ± 0.040 0.240 ± 0.021 0.144 ± 0.022 0.160 ± 0.008 0.161 ± 0.060 0.354 ± 0.007

TimeFlow improvement / 24.14 % 50.53 % 31.61 % 36.12 % 20.33 % 18.90 % 53.40 %

Published in Transactions on Machine Learning Research (04/2024)

training procedure (see Appendix D.3). Lastly, the vanilla Neural Process baseline underperformed, so we
customized its architecture to conduct a fair comparison with TimeFlow. We used the INR and hypernet-
work from TimeFlow to align the Neural Process with our temporal frequency bias and shift modulation
technique.

Table 14: mTAN hyperparameter search.

Dimension size “ linear scheduler lr NumRefPoints k-iwae Target ratio
50 1 1 ◊ 10≠5 32 5 0.2
100 0.95 0.0001 64 10 0.8
- 0.5 0.001 128 - -
- 0.1 0.005 - - -

Table 15: TIDER hyperparameter search.

Dimension size ⁄ar ⁄trend lr Season number
50 0.1 0.01 0.0001 2
100 0.2 0.1 0.001 10
- - - 0.005 15
- - - - 20

Table 16: CSDI chosen hyperparameters.

Epochs lr Layers Channels Nheads Di�usion embedding dimension NSteps Schedule Time embedding Feature embedding
5000 0.001 4 64 8 128 100 Quad 128 16

D.1.2 Models complexity

We can see in Table 17 that our method has 10 times less parameters than BRITS and 20 times less than
SAITS. It is mainly due to their modelisation of interaction between samples. SAITS, which is based on
transformers has the highest number of parameters when mTAN has the lowest number of parameters.

Table 17: Number of parameters for each DL methods on the imputation task on the Electricity dataset.

TimeFlow DeepTime NeuralProcess mTAN SAITS BRITS TIDER
Number of parameters 602k 1315k 248k 113k 11 137k 6 220k 1 034k

D.2 Imputation for previously unseen time series

Setting In this section we analyze in details the imputations results for previously unseen time series
described in Section 4.1. Specifically, TimeFlow is trained on a given set of time series within a defined time
window and then used for inference on new time series. We train TimeFlow on 50 % of the samples and
consider the remaining 50 % as the new time series.

We compare in Table 18 observed grid fit scores and missing grid inference scores for time series known at
training and time series unknown at training.

Results The results presented in Table 18 indicate that the inference MAE for missing grids shows consis-
tency between known and new samples, regardless of the data or sampling rate. However, it is worth noting
that there is a slight drop in performance compared to the results in table Table 1. This decrease is because
in Table 18, the shared architecture is trained on only half the samples, a�ecting its overall performance.

22

Figure 1: Number of parameters for each DL methods on the imputation task on the
Electricity dataset.
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Qualitative comparison with BRITS

0.00 0.02 0.04 0.06 0.08 0.10

0.0

2.5

Individual 35: TimeFlow MAE : 0.316 BRITS MAE : 0.488

0.00 0.02 0.04 0.06 0.08 0.102

0

2
Individual 25: TimeFlow MAE : 0.404 BRITS MAE : 0.737

Ground Truth TimeFlow imputation BRITS imputation Learned points

Figure 2: Electricity dataset. TimeFlow imputation (blue line) and BRITS imputation
(gray line) with 10% of known point (red points) on the eight first days of samples 35
(top) and 25 (bottom). 13/35
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A step back: what do we learn on which signals?

Are the series too regular in our experiments?

Is it reasonable to predict from so few training points?

Should we consider time windows instead of time measurements?

Road occupancy

Solar power generation

14/35
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Ablation: What makes architecture work?

Signal encoding:
Fourier features vs

SIREN [Sitzmann et al., 2020]

γ(t)(= ϕ0) ∈ R64, z(j) ∈ R128

ϕℓ>0 ∈ R256

MLP: 5 layer

Published in Transactions on Machine Learning Research (04/2024)

Table 4: MAE imputation errors on the first time window of each dataset. Best results are bold.

· TimeFlow TimeFlow w SIREN

Electricity

0.05 0.323 0.466
0.10 0.252 0.350
0.20 0.224 0.242
0.30 0.211 0.222
0.50 0.194 0.209

Solar

0.05 0.105 0.114
0.10 0.083 0.094
0.20 0.065 0.079
0.30 0.061 0.072
0.50 0.056 0.066

Tra�c

0.05 0.292 0.333
0.10 0.220 0.252
0.20 0.168 0.191
0.30 0.152 0.163
0.50 0.141 0.154

Results According to the results presented in Table 4, the Fourier features network outperforms the SIREN
network in the imputation task on these datasets. Notably, the performance gap between the two network
architectures are more pronounced at low sampling rates. This disparity can be attributed to the SIREN
network’s di�culty in accurately capturing high frequencies when the time series is sparsely observed. We
hypothesize that the MLP with ReLU activations correctly learns the di�erent frequencies of time series
with multi-temporal patterns by switching on or o� the Fourier embedding frequencies.

B.2.2 Influence of the latent code dimension

The dimension of the latent code z is a crucial parameter in our architecture. If it is too small, it underfits
the time series. Consequently, this adversely a�ects the performance of both the imputation and forecasting
tasks. On the other hand, if the dimension of z is too large, it can lead to overfitting, hindering the model’s
ability to generalize to new data points.

Baselines To investigate the impact of z dimensionality on the performance of TimeFlow, we conducted
experiments on the three considered datasets, specifically focusing on the forecasting task. We varied the
sizes of z within {32, 64, 128, 256}. The other hyperparameters are set as presented in Appendix B.1. The
obtained results for each z dimension are summarized in Table 5.

Table 5: MAE error for di�erent z dimension.

H 32 64 128 256

Electricity

96 0.232 ± 0.016 0.222 ± 0.017 0.222 ± 0.018 0.215 ± 0.019
192 0.245 ± 0.020 0.239 ± 0.018 0.230 ± 0.026 0.233 ± 0.017
336 0.254 ± 0.029 0.244 ± 0.028 0.262 ± 0.031 0.243 ± 0.032
720 0.295 ± 0.027 0.284 ± 0.028 0.303 ± 0.041 0.283 ± 0.029

SolarH

96 0.182 ± 0.009 0.181 ± 0.012 0.179 ± 0.003 0.225 ± 0.047
192 0.195 ± 0.014 0.195 ± 0.016 0.193 ± 0.015 0.197 ± 0.029
336 0.181 ± 0.011 0.182 ± 0.011 0.189 ± 0.013 0.183 ± 0.012
720 0.201 ± 0.027 0.199 ± 0.025 0.209 ± 0.029 0.200 ± 0.030

Tra�c

96 0.223 ± 0.024 0.215 ± 0.028 0.215 ± 0.037 0.210 ± 0.033
192 0.214 ± 0.018 0.217 ± 0.025 0.206 ± 0.023 0.203 ± 0.024
336 0.238 ± 0.029 0.231 ± 0.029 0.226 ± 0.030 0.229 ± 0.029
720 0.272 ± 0.040 0.269 ± 0.035 0.259 ± 0.038 0.262 ± 0.040

Results The results presented in Table 5 suggest that a z dimension of 128 is a reasonable compromise
but only optimal for some settings. Moreover, even though the choice of z dimension seems important, it
doesn’t critically impact the MAE error for the forecasting task.

17
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Ablation: What makes architecture work?

Latent dimensions

γ(t)(= ϕ0) ∈ R64, z(j) ∈ R128

ϕℓ>0 ∈ R256

MLP: 5 layer

Published in Transactions on Machine Learning Research (04/2024)

Table 4: MAE imputation errors on the first time window of each dataset. Best results are bold.

· TimeFlow TimeFlow w SIREN

Electricity

0.05 0.323 0.466
0.10 0.252 0.350
0.20 0.224 0.242
0.30 0.211 0.222
0.50 0.194 0.209

Solar

0.05 0.105 0.114
0.10 0.083 0.094
0.20 0.065 0.079
0.30 0.061 0.072
0.50 0.056 0.066

Tra�c

0.05 0.292 0.333
0.10 0.220 0.252
0.20 0.168 0.191
0.30 0.152 0.163
0.50 0.141 0.154

Results According to the results presented in Table 4, the Fourier features network outperforms the SIREN
network in the imputation task on these datasets. Notably, the performance gap between the two network
architectures are more pronounced at low sampling rates. This disparity can be attributed to the SIREN
network’s di�culty in accurately capturing high frequencies when the time series is sparsely observed. We
hypothesize that the MLP with ReLU activations correctly learns the di�erent frequencies of time series
with multi-temporal patterns by switching on or o� the Fourier embedding frequencies.

B.2.2 Influence of the latent code dimension

The dimension of the latent code z is a crucial parameter in our architecture. If it is too small, it underfits
the time series. Consequently, this adversely a�ects the performance of both the imputation and forecasting
tasks. On the other hand, if the dimension of z is too large, it can lead to overfitting, hindering the model’s
ability to generalize to new data points.

Baselines To investigate the impact of z dimensionality on the performance of TimeFlow, we conducted
experiments on the three considered datasets, specifically focusing on the forecasting task. We varied the
sizes of z within {32, 64, 128, 256}. The other hyperparameters are set as presented in Appendix B.1. The
obtained results for each z dimension are summarized in Table 5.

Table 5: MAE error for di�erent z dimension.

H 32 64 128 256

Electricity

96 0.232 ± 0.016 0.222 ± 0.017 0.222 ± 0.018 0.215 ± 0.019
192 0.245 ± 0.020 0.239 ± 0.018 0.230 ± 0.026 0.233 ± 0.017
336 0.254 ± 0.029 0.244 ± 0.028 0.262 ± 0.031 0.243 ± 0.032
720 0.295 ± 0.027 0.284 ± 0.028 0.303 ± 0.041 0.283 ± 0.029

SolarH

96 0.182 ± 0.009 0.181 ± 0.012 0.179 ± 0.003 0.225 ± 0.047
192 0.195 ± 0.014 0.195 ± 0.016 0.193 ± 0.015 0.197 ± 0.029
336 0.181 ± 0.011 0.182 ± 0.011 0.189 ± 0.013 0.183 ± 0.012
720 0.201 ± 0.027 0.199 ± 0.025 0.209 ± 0.029 0.200 ± 0.030

Tra�c

96 0.223 ± 0.024 0.215 ± 0.028 0.215 ± 0.037 0.210 ± 0.033
192 0.214 ± 0.018 0.217 ± 0.025 0.206 ± 0.023 0.203 ± 0.024
336 0.238 ± 0.029 0.231 ± 0.029 0.226 ± 0.030 0.229 ± 0.029
720 0.272 ± 0.040 0.269 ± 0.035 0.259 ± 0.038 0.262 ± 0.040

Results The results presented in Table 5 suggest that a z dimension of 128 is a reasonable compromise
but only optimal for some settings. Moreover, even though the choice of z dimension seems important, it
doesn’t critically impact the MAE error for the forecasting task.
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Table 9: MAE error on the forecasting task using 10 inner-steps during training and a varying number of
adaptation gradient steps at inference. Best results are in bold.

H 1 3 10 50

Electricity

96 0.381 ± 0.030 0.249 ± 0.024 0.236 ± 0.024 0.238 ± 0.024
192 0.448 ± 0.045 0.273 ± 0.019 0.244 ± 0.014 0.244 ± 0.013
336 0.514 ± 0.053 0.283 ± 0.033 0.241 ± 0.025 0.242 ± 0.024
720 0.647 ± 0.068 0.400 ± 0.051 0.286 ± 0.023 0.287 ± 0.021

SolarH

96 0.605 ± 0.029 0.380 ± 0.018 0.188 ± 0.012 0.199 ± 0.015
192 0.382 ± 0.072 0.250 ± 0.012 0.202 ± 0.034 0.204 ± 0.035
336 0.745 ± 0.105 0.431 ± 0.221 0.201 ± 0.033 0.208 ± 0.032
720 0.745 ± 0.082 0.477 ± 0.039 0.205 ± 0.030 0.205 ± 0.029

Tra�c

96 0.450 ± 0.023 0.273 ± 0.026 0.225 ± 0.028 0.230 ± 0.034
192 0.506 ± 0.028 0.318 ± 0.021 0.233 ± 0.022 0.236 ± 0.026
336 0.500 ± 0.042 0.320 ± 0.021 0.247 ± 0.028 0.249 ± 0.031
720 0.511 ± 0.035 0.323 ± 0.022 0.266 ± 0.027 0.272 ± 0.024

architecture, which uses a set encoder to transform a set of observations (ti, xti)iœI into a latent code z by
applying a pooling layer after a feed forward network. We observed that this encoder in combination with
the modulated fourier features network was able to achieve relatively good results on the forecasting task
but su�ered of underfitting on more complex datasets such as Electricity.

This led us to consider auto-decoding methods instead, i.e. encoder-less, architectures for conditioning the
weights of the coordinate-based network. We trained TimeFlow with the REPTILE algorithm (Nichol et al.,
2018), which is a first-order meta-learning technique that adapts the code in a few steps of gradient descent.
In contrast with a second-order method, we observed that REPTILE was less costly to train but struggled
to escape sub optimal minima, which led to unstable training and underfitting.

From an implementation point of view, the only di�erence between second order and first order, is that in
the latter the code is detached from the computation graph before taking the outer-loop parameter update.
When the code is not detached, it remains a function of the common parameters z = z(◊, w), which means
that the computation graph for the outer-loop also includes the inner-loop updates to the codes. Therefore
the outer-loop gradient update involves a gradient through a gradient and requires an additional backward
pass through the INR to compute the Hessian. Please refer to Finn et al. (2017) for more technical details.

Table 10: Comparison of second-order and first-order (REPTILE) meta learning for TimeFlow on the im-
putation task. Mean MAE results on the missing grid over five di�erent time windows. · stands for the
subsampling rate. Bold results are best.

· TimeFlow TimeFlow w REPTILE
0.05 0.324 ± 0.013 0.363 ± 0.062
0.10 0.250 ± 0.010 0.343 ± 0.036

Electricity 0.20 0.225 ± 0.008 0.312 ± 0.043
0.30 0.212 ± 0.007 0.308 ± 0.035
0.50 0.194 ± 0.007 0.305 ± 0.046
0.05 0.095 ± 0.015 0.125 ± 0.025
0.10 0.083 ± 0.015 0.123 ± 0.032

Solar 0.20 0.072 ± 0.015 0.108 ± 0.021
0.30 0.061 ± 0.012 0.105 ± 0.027
0.50 0.054 ± 0.013 0.102 ± 0.021
0.05 0.283 ± 0.016 0.304 ± 0.026
0.10 0.211 ± 0.012 0.264 ± 0.009

Tra�c 0.20 0.168 ± 0.006 0.242 ± 0.019
0.30 0.151 ± 0.007 0.218 ± 0.020
0.50 0.139 ± 0.007 0.216 ± 0.017

Results In Table 10, we show the performance of first-order TimeFlow on the imputation task. In low
sampling regimes the di�erence with TimeFlow is less perceptive, but its performance plateaus when the
number of points increases. This is not surprising. Indeed, as though the task is actually simpler when ·
increases, the optimization is made more di�cult with the increased number of observations. We provide
the performance of TimeFlow with a set encoder on the Forecasting task in Table 11. We observed that this
version failed to generalize well for complex datasets.
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B.2.3 Influence of the number of gradient steps

As can be seen in Table 6, using three gradient steps at inference yield an inference time of less than 0.2
seconds. The latter can still be reduced by doing only one step at the cost of an increase in the forecasting
error. As observed in Table 6, increasing the number of gradient steps above 3 steps during inference does
not improve forecasting performance.

Table 6: Inference time (in seconds) and MAE error on the forecasting task on the Electricity dataset for a
horizon of length 720, a look-back window of length 512, and a varying number of adaptation gradient steps.
The statistics are computed over 10 runs using an NVIDIA TITAN RTX GPU.

Gradient descent steps 1 3 10 50 500 5000
Inference time (s) 0.109 ± 0.003 0.176 ± 0.009 0.427 ± 0.031 3.547 ± 0.135 17.722 ± 0.536 189.487 ± 8.060

MAE 0.351 ± 0.038 0.303 ± 0.041 0.300 ± 0.040 0.299 ± 0.039 0.302 ± 0.038 0.308 ± 0.037

Table 7: MAE error on the forecasting task using 1 inner-step during training and a varying number of
adaptation gradient steps at inference. Best results are in bold and / symbol means that the MAE score is
very high (Ø 1).

H 1 3 10 50

Electricity

96 0.244 ± 0.017 0.246 ± 0.017 0.261 ± 0.016 /
192 0.253 ± 0.024 0.253 ± 0.022 0.261 ± 0.020 0.265 ± 0.019
336 0.267 ± 0.032 0.268 ± 0.030 0.277 ± 0.028 0.281 ± 0.027
720 0.302 ± 0.030 0.306 ± 0.029 0.310 ± 0.028 0.301 ± 0.029

SolarH

96 0.192 ± 0.023 0.623 ± 0.397 / /
192 0.175 ± 0.006 0.252 ± 0.068 / /
336 0.192 ± 0.016 0.471 ± 0.029 / /
720 0.216 ± 0.034 0.465 ± 0.063 / 0.550 ± 0.187

Tra�c

96 0.215 ± 0.029 0.329 ± 0.039 / /
192 0.208 ± 0.019 0.310 ± 0.033 0.312 ± 0.032 /
336 0.237 ± 0.028 0.307 ± 0.038 / /
720 0.263 ± 0.038 0.320 ± 0.040 / /

Table 8: MAE error on the forecasting task using 3 inner-steps during training and a varying number of
adaptation gradient steps at inference. Best results are in bold.

H 1 3 10 50

Electricity

96 0.259 ± 0.020 0.222 ± 0.018 0.222 ± 0.017 0.228 ± 0.019
192 0.269 ± 0.020 0.230 ± 0.026 0.232 ± 0.020 0.233 ± 0.026
336 0.273 ± 0.033 0.262 ± 0.031 0.264 ± 0.032 0.268 ± 0.032
720 0.351 ± 0.038 0.303 ± 0.041 0.300 ± 0.040 0.299 ± 0.039

SolarH

96 0.487 ± 0.196 0.179 ± 0.003 0.181 ± 0.003 0.186 ± 0.003
192 0.411 ± 0.088 0.193 ± 0.015 0.195 ± 0.014 0.199 ± 0.013
336 0.435 ± 0.153 0.189 ± 0.013 0.203 ± 0.006 0.223 ± 0.012
720 0.394 ± 0.173 0.209 ± 0.029 0.203 ± 0.006 0.209 ± 0.027

Tra�c

96 0.320 ± 0.038 0.215 ± 0.037 0.219 ± 0.043 0.226 ± 0.046
192 0.299 ± 0.023 0.206 ± 0.023 0.209 ± 0.026 0.214 ± 0.027
336 0.345 ± 0.038 0.226 ± 0.030 0.228 ± 0.031 0.233 ± 0.032
720 0.321 ± 0.034 0.259 ± 0.038 0.260 ± 0.038 0.266 ± 0.039

Results We conduct more extensive experiments in Table 7, Table 8, Table 9 to quantify the MAE score
variation according to di�erent number of gradient steps during training and inference. The tables show
that using the same number of steps in training and inference leads to better results. This is expected since
using di�erent gradient steps for training and inference makes the inference model slightly di�erent from the
training model. In addition, using 3 gradient steps instead of 1 clearly improves the performances, but using
10 instead of 3 does not. Indeed, it usually leads to overall better results for longer horizon, but the gain is
not clear for smaller horizons. Hence using 3 gradient steps is a suitable choice.

B.2.4 TimeFlow variants with other meta-learning techniques

Baselines Before converging to the current architecture and optimization of TimeFlow, we explored dif-
ferent options to condition the INR with the observations. The first one was inspired by the neural process
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Wide range of baselines on three datasets

Table 2: Mean MAE forecast results for adjacent time windows. H stands for the
horizon. Bold results are best, underline results are second best. Look-back window
size = 512

Continuous methods Discrete methods

H TimeFlow DeepTime Neural Process Patch-TST DLinear AutoFormer Informer

Electricity

96 0.218 ± 0.017 0.240 ± 0.027 0.392 ± 0.045 0.214 ± 0.020 0.236 ± 0.035 0.310 ± 0.031 0.293 ± 0.0184

192 0.238 ± 0.012 0.251 ± 0.023 0.401 ± 0.046 0.225 ± 0.017 0.248 ± 0.032 0.322 ± 0.046 0.336 ± 0.032

336 0.265 ± 0.036 0.290 ± 0.034 0.434 ± 0.075 0.242 ± 0.024 0.284 ± 0.043 0.330 ± 0.019 0.405 ± 0.044

720 0.318 ± 0.073 0.356 ± 0.060 0.605 ± 0.149 0.291 ± 0.040 0.370 ± 0.086 0.456 ± 0.052 0.489 ± 0.072

SolarH

96 0.172 ± 0.017 0.197 ± 0.002 0.221 ± 0.048 0.232 ± 0.008 0.204 ± 0.002 0.261 ± 0.053 0.273 ± 0.023

192 0.198 ± 0.010 0.202 ± 0.014 0.244 ± 0.048 0.231 ± 0.027 0.211 ± 0.012 0.312 ± 0.085 0.256 ± 0.026

336 0.207 ± 0.019 0.200 ± 0.012 0.241 ± 0.005 0.254 ± 0.048 0.212 ± 0.019 0.341 ± 0.107 0.287 ± 0.006

720 0.215 ± 0.016 0.240 ± 0.011 0.403 ± 0.147 0.271 ± 0.036 0.246 ± 0.015 0.368 ± 0.006 0.341 ± 0.049

Traffic

96 0.216 ± 0.033 0.229 ± 0.032 0.283 ± 0.028 0.201 ± 0.031 0.225 ± 0.034 0.299 ± 0.080 0.324 ± 0.113

192 0.208 ± 0.021 0.220 ± 0.020 0.292 ± 0.023 0.195 ± 0.024 0.215 ± 0.022 0.320 ± 0.036 0.321 ± 0.052

336 0.237 ± 0.040 0.247 ± 0.033 0.305 ± 0.039 0.220 ± 0.036 0.244 ± 0.035 0.450 ± 0.127 0.394 ± 0.066

720 0.266 ± 0.048 0.290 ± 0.045 0.339 ± 0.037 0.268 ± 0.050 0.290 ± 0.047 0.630 ± 0.043 0.441 ± 0.055

TimeFlow improvement / 6.56 % 30.79 % 2.64 % 7.30 % 35.43 % 33.07 %
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Forecast on sparsely observed look-back window (1/2)

Table 3: MAE results for forecasting with missing values in the look-back window. τ
stands for the percentage of observed values in the look-back window. Best results are
in bold. Look-back window size = 512

TimeFlow DeepTime Neural Process

H τ Imputation error Forecast error Imputation error Forecast error Imputation error Forecast error

Electricity

96
0.5 0.151 ± 0.003 0.239 ± 0.013 0.209 ± 0.004 0.270 ± 0.019 0.460 ± 0.048 0.486 ± 0.078
0.2 0.208 ± 0.006 0.260 ± 0.015 0.249 ± 0.006 0.296 ± 0.023 0.644 ± 0.079 0.650 ± 0.095
0.1 0.272 ± 0.006 0.295 ± 0.016 0.284 ± 0.007 0.324 ± 0.026 0.740 ± 0.083 0.737 ± 0.106

192
0.5 0.149 ± 0.004 0.235 ± 0.011 0.204 ± 0.004 0.265 ± 0.018 0.461 ± 0.045 0.498 ± 0.070
0.2 0.209 ± 0.006 0.257 ± 0.013 0.244 ± 0.007 0.290 ± 0.023 0.601 ± 0.075 0.626 ± 0.101
0.1 0.274 ± 0.010 0.289 ± 0.016 0.282 ± 0.007 0.315 ± 0.025 0.461 ± 0.045 0.724 ± 0.090

Traffic

96
0.5 0.180 ± 0.016 0.219 ± 0.026 0.272 ± 0.028 0.243 ± 0.030 0.436 ± 0.025 0.444 ± 0.047
0.2 0.239 ± 0.019 0.243 ± 0.027 0.335 ± 0.026 0.293 ± 0.027 0.596 ± 0.049 0.597 ± 0.075
0.1 0.312 ± 0.020 0.290 ± 0.027 0.385 ± 0.025 0.344 ± 0.027 0.734 ± 0.102 0.731 ± 0.132

192
0.5 0.176 ± 0.014 0.217 ± 0.017 0.241 ± 0.027 0.234 ± 0.021 0.477 ± 0.042 0.476 ± 0.043
0.2 0.233 ± 0.017 0.236 ± 0.021 0.286 ± 0.027 0.276 ± 0.020 0.685 ± 0.109 0.678 ± 0.108
0.1 0.304 ± 0.019 0.277 ± 0.021 0.331 ± 0.025 0.324 ± 0.021 0.888 ± 0.178 0.877 ± 0.174

TimeFlow improvement / / 18.97 % 11.87 % 61.88 % 58.41 %
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Forecast on sparsely observed look-back window (2/2)
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Figure 3: Traffic dataset, sample 95. In this figure, TimeFlow simultaneously imputes
and forecasts at horizon 96 with a 10% partially observed look-back window of length
512.
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Known vs New Samples

TimeFlow vs PatchTST

⇒ Very close performances: Known ≈ New / TimeFlow ≈ PatchTST
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Results. The results in Table 2 show that our approach ranks in the top two across all datasets and
horizons and is the overall best continuous method. TimeFlow’s performance is comparable to the current
SOTA model PatchTST, with only 2% relative di�erence. Moreover, TimeFlow shows consistent results
across the three datasets, whereas the other best discrete and continuous baselines, i.e. PatchTST and
DeepTime, performance drops for some datasets. We also note that, despite the great performance of the
SOTA PatchTST, other transformer-based baselines (discrete methods in Table 2) perform poorly. We
provide a detailed insight on these results in Appendix E.1. Overall, although this evaluation setting favors
discrete methods because the time series are observed at evenly distributed time steps, TimeFlow consistently
performs as well as PatchTST and outperforms all the other methods, whether discrete or continuous. It
is the first time that a continuous model has achieved the same level of performance as discrete methods
within their specific setting.

4.2.2 Forecasting on previously unseen time series.

This section discusses how TimeFlow adapts to unseen time series, which is critical in forecasting. Indeed, in
many real-world applications, forecasters are trained on a limited subset of available samples and applied to
a wider range of samples during inference. Informer, AutoFormer, or DLinear original architectures directly
model the relationships between time series (channel-dependence), limiting their adaptability to new samples.
In contrast, TimeFlow takes a di�erent approach by considering the observed series at di�erent locations as
distinct samples, similar to PatchTST, Neural Process, and DeepTime. This independence allows TimeFlow
to e�ectively generalize to previously unseen time series of the same phenomenon.

Setting. In this setting, we propose to evaluate how TimeFlow performs on previously unseen time series.
We compare it to the best forecaster, PatchTST. We train TimeFlow and PatchTST on 50 % of the samples
and consider the remaining 50 % as the new time series. The training procedure is the same as described in
Figure 4. In Figure 5, we present the results of TimeFlow and PatchTST for both known and new samples
(for periods outside the training window).

Results. The results in Figure 5 highlight two key observations. First, both approaches show robust
adaptability to new samples, as evidenced by the minimal di�erence in mean absolute error between known
and new samples at inference. Second, TimeFlow and PatchTST exhibit comparable performance in this
context, with negligible di�erences across horizons and datasets.

Figure 5: Mean MAE forecasting task results over di�erent horizons in the context of generalization to new
time series. Comparison of TimeFlow and PatchTST performances on the Electricity, Tra�c and SolarH
datasets.
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Quantify uncertainty with TimeFlow (L is the pinball loss)

0.2 0.3 0.4 0.5 0.6 0.7 0.8

3

2

1

0

1

2

0.2 0.3 0.4 0.5 0.6 0.7 0.8
3

2

1

0

1

2

3

0.2 0.3 0.4 0.5 0.6 0.7 0.8

1

0

1

2

3

0.2 0.3 0.4 0.5 0.6 0.7 0.8
2

1

0

1

2

0.2 0.3 0.4 0.5 0.6 0.7 0.8

1

0

1

2

3

0.2 0.3 0.4 0.5 0.6 0.7 0.8

1

0

1

2

3

Ground Truth q25-q75 q5-q95

Figure 4: Quantifying uncertainty in block imputation of two missing days in the
Electricity dataset.
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Latent space exploration

For a given time series family {x (j)}nj=1 we learn a family of codes {z (j)}nj=1

in the latent space.

Figure 5: Latent space visualization
22/35



Motivations TimeFlow architecture Experiments Latent space Conclusion References

Bezier path between two codes z

Figure 6: Bezier path between two points

B(λ) = (1 − λ)3P0 + 3(1 − λ)2λP1 + 3(1 − λ)λ2P2 + λ3P3
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Generate new time series through latent space interpolation

Figure 7: Autodecoded generate zλ for several λ’s
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Learn representations from irregular/unaligned time series

Latent spaceIrregular and unaligned temporal grids

Extract aligned representations

Motivations
A well-aligned latent space makes it easier to perform downstream tasks

This two-stage approach is underexplored

25/35



Motivations TimeFlow architecture Experiments Latent space Conclusion References

TimeFlow can capture flexible representations

Auto-decoding mechanism extracts a
representation z (j) ∈ Rd for a time

series x (j) ∈ RT (j)

For a time series dataset {x(j)}nj=1 we
can build the corresponding
representations dataset {z(j)}nj=1

Is the latent space Z efficient for
downstream tasks ?

Latent spaceTime series space TimeFlow 
encoding
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Example of downstream task : unconditional generation

Autodecoded
modulations

Linear 
hypernetwork

Latent 
representation

Motivations: data augmentation, overcoming privacy/property constraints

Training procedure: (i) Fit TimeFlow (ii) Learn a Denoising Diffusion Probabilistic Model (DDPM) on
the learned representations

Inference procedure: (i) Sample a new representation (ii) Decode the representation
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Experiments

Experimental setup

Training on 8000 hourly time series (two-weeks long) from Electricity

2000 time series for testing and 2000 generated time series

We compare with two baselines : DDPM only and TimeGan [Yoon et al., 2019]

We want to assess the fidelity and diversity

TimeFlow

+ DDPM

DDPM

only
TimeGAN

Fully separable

generation

Discriminative score ↓ 0.1388 0.1704 0.4890 0.5000
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Experiments

Experimental setup

Training on 8000 hourly time series (two-weeks long) from Electricity

2000 time series for testing and 2000 generated time series

We compare with two baselines : DDPM only and TimeGan [Yoon et al., 2019]

We want to assess the fidelity and diversity
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Conclusion

Synthesis

1 A semantically rich latent space

2 The representations can encode irregular/unaligned time series

3 First unconditional generation experiments are convincing

Limitations and perspectives

1 Unconditional generation experiments performed on only one dataset

2 Other downstream tasks should be explored to assess usefulness for downstream tasks

29/35



Conclusion



Motivations TimeFlow architecture Experiments Latent space Conclusion References

Key takeaways

TimeFlow offers:

Unified + Continuous approach for time series imputation & forecasting.

Adaptability to new contexts through meta-learning optimization.

High performances in all situations (same hyper-parameters)

Wide range of experiments to measure the benefits of all components

Limitation:

Inference computation time (10-100 slower that competitors)

Perspectives:

Moving to multivariate Time-Series

30/35



Motivations TimeFlow architecture Experiments Latent space Conclusion References

Perspectives

Time Series... + context modeling

Public transportation
Agronomy : Growth model / yield prediction

Time representation ⇒ Move to a time window

How transformers failed to represent local data
Memory networks
VQ-VAE / time series
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