

TIME SERIES CONTINUOUS MODELING FOR IMPUTATION AND FORECASTING WITH IMPLICIT NEURAL REPRESENTATIONS

March, 11th, Huawei Research

Etienne Le Naour, Louis Serrano, Léon Migus, Yuan Yin, Ghislain Agoua, Nicolas Baskiotis, Patrick Gallinari, Vincent Guigue https://github.com/etiennelnr/timeflow

- Modeling Time Series as a continuous function
- $\Rightarrow\,$ Deal with irregular sampling / unaligned sensors
- \Rightarrow Unified framework for Data imputation + Forecasting

A 💶	Motivations	0.00	TimeFlow architecture	Experiments	Latent space	Conclusion	References
	Techni	ical options	5				
	Gaussia	n Processes		[Willia	ms and Ras	mussen 2	006]

- Neural Processes
- Specific Architecture
- Diffusion Model
- Implicit Neural Representation (INR)
- [Williams and Rasmussen, 2006] [Kim et al., 2019] (e.g. mTAN) [Shukla and Marlin, 2021] [Ho et al., 2020] [Dupont et al., 2022]

(a) Training parts from ShapeNet. (b) t-SNE plot of part embeddings. (c) Reconstructing entire scenes with Local Implicit Grids

I amr

- A first attempt:
- Room for improvement:
 - Not designed for data imputation (forecasting only)
 - \blacksquare \approx Ridge Regression on sampled Fourier descriptors

DeepTime [Woo et al., 2022]

TIMEFLOW ARCHITECTURE

1 NeRF encoding : $t \rightarrow \gamma(t) \Rightarrow$ Fixed frequency description

1 NeRF encoding : $t \to \gamma(t)$, N frequency bands $\gamma(t) := (\sin(\pi t), \cos(\pi t), \cdots, \sin(2^N \pi t), \cos(2^N \pi t))$ **2** Then $\gamma(t) \to \mathsf{MLP}(\gamma(t); \theta)$ ($vs \approx \mathsf{Ridge Reg. in [Woo et al., 2022]})$ Activation functions are ReLU (i.e. <math>ReLU(x) = max(0, x))

■ Solution → Hypernetwork that modulate the INR [Dupont et al., 2022, Klocek et al., 2019, Sitzmann et al., 2020]

Motivations TimeFlow architecture 00000 Experiments Latent space Conclusion References Insight on parameters θ , w and the $z^{(j)}$

- $\gamma(t)(=\phi_0)\in\mathbb{R}^{64}$, $z^{(j)}\in\mathbb{R}^{128}$
- $\bullet \ \phi_{\ell > \mathbf{0}} \in \mathbb{R}^{256}$
- MLP: 5 layer

- $z^{(j)}$: instance coding
- θ and w = shared information across all samples
- MSE Loss
- Training: [Zintgraf et al., 2019] inner+outer loops
- i) Sample adaptation = freeze $(\theta, w) + 3$ grad. steps on $z^{(j)}$ [Second order grad. (Hessien comput.)]
- o) (θ, w) optimization
- Inference: i) + forward not so fast...

Motivations TimeFlow architecture 0000 Experiments Latent space Conclusion References Several research questions

- $\gamma(t)(=\phi_0)\in\mathbb{R}^{64}$, $z^{(j)}\in\mathbb{R}^{128}$
- $\bullet \ \phi_{\ell > 0} \in \mathbb{R}^{256}$
- MLP: 5 layer

How to link between hypernet. & INR?
 Stability

- 2 Impact of grad. in the inner loop?
 - Stability
 - Comp. time
- 3 INR:
 - How to map *t* in input?
 - Impact of non-linearity of the INR

EXPERIMENTS

Table 1: Mean MAE imputation results on the missing grid only. τ stands for the subsampling rate. Bold results are best, underlined results are second best.

			Continuous	methods		Discrete methods			
	τ	TimeFlow	DeepTime	mTAN	Neural Process	CSDI	SAITS	BRITS	TIDER
	0.05	$\textbf{0.324}\pm\textbf{0.013}$	0.379 ± 0.037	0.575 ± 0.039	0.357 ± 0.015	0.462 ± 0.021	0.384 ± 0.019	$\underline{0.329\pm0.015}$	0.427 ± 0.010
	0.10	$\textbf{0.250}\pm\textbf{0.010}$	0.333 ± 0.034	0.412 ± 0.047	0.417 ± 0.057	0.398 ± 0.072	0.308 ± 0.011	$\underline{0.287\pm0.015}$	0.399 ± 0.009
Electricity	0.20	$\textbf{0.225}\pm\textbf{0.008}$	$\underline{0.244} \pm 0.013$	0.342 ± 0.014	0.320 ± 0.017	0.341 ± 0.068	0.261 ± 0.008	0.245 ± 0.011	0.391 ± 0.010
	0.30	$\textbf{0.212}\pm\textbf{0.007}$	0.240 ± 0.014	0.335 ± 0.015	0.300 ± 0.022	0.277 ± 0.059	0.236 ± 0.008	0.221 ± 0.008	0.384 ± 0.009
	0.50	0.194 ± 0.007	0.227 ± 0.012	0.340 ± 0.022	0.297 ± 0.016	$\textbf{0.168} \pm \textbf{0.003}$	0.209 ± 0.008	$\underline{0.193\pm0.008}$	0.386 ± 0.009
	0.05	$\textbf{0.095}\pm\textbf{0.015}$	0.190 ± 0.020	0.241 ± 0.102	$\underline{0.115\pm0.015}$	0.374 ± 0.033	0.142 ± 0.016	0.165 ± 0.014	0.291 ± 0.009
	0.10	$\textbf{0.083}\pm\textbf{0.015}$	0.159 ± 0.013	0.251 ± 0.081	0.114 ± 0.014	0.375 ± 0.038	0.124 ± 0.018	0.132 ± 0.015	0.276 ± 0.010
Solar	0.20	$\textbf{0.072}\pm\textbf{0.015}$	0.149 ± 0.020	0.314 ± 0.035	0.109 ± 0.016	0.217 ± 0.023	0.108 ± 0.014	0.109 ± 0.012	0.270 ± 0.010
	0.30	$\textbf{0.061}\pm\textbf{0.012}$	0.135 ± 0.014	0.338 ± 0.05	0.108 ± 0.016	0.156 ± 0.002	0.100 ± 0.015	$\underline{0.098\pm0.012}$	0.266 ± 0.010
	0.50	$\textbf{0.054}\pm\textbf{0.013}$	0.098 ± 0.013	0.315 ± 0.080	0.107 ± 0.015	$\underline{0.079\pm0.011}$	0.094 ± 0.013	$\overline{0.088\pm0.013}$	0.262 ± 0.009
	0.05	0.283 ± 0.016	$\textbf{0.246}\pm\textbf{0.010}$	0.406 ± 0.074	0.318 ± 0.014	0.337 ± 0.045	0.293 ± 0.007	$\underline{0.261 \pm 0.010}$	0.363 ± 0.007
	0.10	$\textbf{0.211}\pm\textbf{0.012}$	$\underline{0.214\pm0.007}$	0.319 ± 0.025	0.288 ± 0.018	0.288 ± 0.017	0.237 ± 0.006	0.245 ± 0.009	0.362 ± 0.006
Traffic	0.20	$\textbf{0.168}\pm\textbf{0.006}$	0.216 ± 0.006	0.270 ± 0.012	0.271 ± 0.011	0.269 ± 0.017	$\underline{0.197 \pm 0.005}$	0.224 ± 0.008	0.361 ± 0.006
	0.30	$\textbf{0.151} \pm \textbf{0.007}$	$\underline{0.172\pm0.008}$	0.251 ± 0.006	0.259 ± 0.012	0.240 ± 0.037	0.180 ± 0.006	0.197 ± 0.007	0.355 ± 0.006
	0.50	$\textbf{0.139}\pm\textbf{0.007}$	0.171 ± 0.005	0.278 ± 0.040	0.240 ± 0.021	$\underline{0.144\pm0.022}$	0.160 ± 0.008	0.161 ± 0.060	0.354 ± 0.007
TimeFlow improvement		/	24.14 %	50.53 %	31.61 %	36.12 %	20.33 %	18.90 %	53.40 %

TimeFlow architecture

Motivations

Experiments 000000000

Latent space

Conclusion References

We compare to a wide range of baselines on three datasets

Table 1: Mean MAE imputation results on the missing grid only. τ stands for the subsampling rate. Bold results are best, underlined results are second best.

-			Continuous	methods		Discrete methods				
	τ	TimeFlow	DeepTime	mTAN	Neural Process	CSDI	SAITS	BRITS	TIDER	
	0.05	0.324 ± 0.013	0.379 ± 0.037	0.575 ± 0.039	0.357 ± 0.015	0.462 ± 0.021	0.384 ± 0.019	$\underline{0.329\pm0.015}$	0.427 ± 0.010	
	0.10	0.250 ± 0.010	0.333 ± 0.034	0.412 ± 0.047	0.417 ± 0.057	0.398 ± 0.072	0.308 ± 0.011	$\underline{0.287 \pm 0.015}$	0.399 ± 0.009	
Electricity	0.20	0.225 ± 0.008	0.244 ± 0.013	0.342 ± 0.014	0.320 ± 0.017	0.341 ± 0.068	0.261 ± 0.008	0.245 ± 0.011	0.391 ± 0.010	
	0.30	0.212 ± 0.007	0.240 ± 0.014	0.335 ± 0.015	0.300 ± 0.022	0.277 ± 0.059	0.236 ± 0.008	0.221 ± 0.008	0.384 ± 0.009	
	0.50	0.194 ± 0.007	0.227 ± 0.012	0.340 ± 0.022	0.297 ± 0.016	$\textbf{0.168}\pm\textbf{0.003}$	0.209 ± 0.008	$\underline{0.193\pm0.008}$	0.386 ± 0.009	
	0.05	0.095 ± 0.015	0.190 ± 0.020	0.241 ± 0.102	$\underline{0.115\pm0.015}$	0.374 ± 0.033	0.142 ± 0.016	0.165 ± 0.014	0.291 ± 0.009	
	0.10	0.083 ± 0.015	0.159 ± 0.013	0.251 ± 0.081	0.114 ± 0.014	0.375 ± 0.038	0.124 ± 0.018	0.132 ± 0.015	0.276 ± 0.010	
Solar	0.20	0.072 ± 0.015	0.149 ± 0.020	0.314 ± 0.035	0.109 ± 0.016	0.217 ± 0.023	0.108 ± 0.014	0.109 ± 0.012	0.270 ± 0.010	
	0.30	0.061 ± 0.012	0.135 ± 0.014	0.338 ± 0.05	0.108 ± 0.016	0.156 ± 0.002	0.100 ± 0.015	0.098 ± 0.012	0.266 ± 0.010	
	0.50	0.054 ± 0.013	0.098 ± 0.013	0.315 ± 0.080	0.107 ± 0.015	$\underline{0.079\pm0.011}$	0.094 ± 0.013	$\overline{0.088\pm0.013}$	0.262 ± 0.009	
	0.05	0.283 ± 0.016	0.246 ± 0.010	0.406 ± 0.074	0.318 ± 0.014	0.337 ± 0.045	0.293 ± 0.007	$\underline{0.261}\pm 0.010$	0.363 ± 0.007	
	0.10	0.211 ± 0.012	0.214 ± 0.007	0.319 ± 0.025	0.288 ± 0.018	0.288 ± 0.017	0.237 ± 0.006	0.245 ± 0.009	0.362 ± 0.006	
Traffic	0.20	$\textbf{0.168} \pm \textbf{0.006}$	0.216 ± 0.006	0.270 ± 0.012	0.271 ± 0.011	0.269 ± 0.017	0.197 ± 0.005	0.224 ± 0.008	0.361 ± 0.006	
	0.30	0.151 ± 0.007	0.172 ± 0.008	0.251 ± 0.006	0.259 ± 0.012	0.240 ± 0.037	0.180 ± 0.006	0.197 ± 0.007	0.355 ± 0.006	
	0.50	$\textbf{0.139}\pm\textbf{0.007}$	0.171 ± 0.005	0.278 ± 0.040	0.240 ± 0.021	$\underline{0.144\pm0.022}$	0.160 ± 0.008	0.161 ± 0.060	0.354 ± 0.007	
TimeFlow improvement		/	24.14 %	50.53 %	31.61 %	36.12 %	20.33 %	18.90 %	53.40 %	

	TimeFlow	DeepTime	NeuralProcess	mTAN	SAITS	BRITS	TIDER
Number of parameters	602k	1315k	248k	113k	$11 \ 137 k$	$6~220 \rm k$	$1~034 \rm k$

Figure 1: Number of parameters for each DL methods on the imputation task on the Electricity dataset.

Motivations TimeFlow architecture Experiments 000000000 Latent space Conclusion References Qualitative comparison with BRITS

Figure 2: *Electricity dataset*. TimeFlow imputation (blue line) and BRITS imputation (gray line) with 10% of known point (red points) on the eight first days of samples 35 (top) and 25 (bottom).

- Are the series too regular in our experiments?
- Is it reasonable to predict from so few training points?
- Should we consider time windows instead of time measurements?

Motivations	TimeFlow architecture	Experiments 000000000	Latent space	Conclusion	References
Ablati	on: What m	akes architecture	work?		

Signal encoding: Fourier features vs SIREN [Sitzmann et al., 2020]

•
$$\gamma(t)(=\phi_0) \in \mathbb{R}^{64}, \ z^{(j)} \in \mathbb{R}^{128}$$

• $\phi_{\ell>0} \in \mathbb{R}^{256}$

MLP: 5 layer

	au	TimeFlow	TimeFlow w SIREN
	0.05	0.323	0.466
	0.10	0.252	0.350
Electricity	0.20	0.224	0.242
	0.30	0.211	0.222
	0.50	0.194	0.209
	0.05	0.105	0.114
	0.10	0.083	0.094
Solar	0.20	0.065	0.079
	0.30	0.061	0.072
	0.50	0.056	0.066
	0.05	0.292	0.333
	0.10	0.220	0.252
Traffic	0.20	0.168	0.191
	0.30	0.152	0.163
	0.50	0.141	0.154

Motivations TimeFlow architecture Experiments 000000000 Latent space Conclusion References Ablation: What makes architecture work?

Latent dimensions

- $\gamma(t)(=\phi_0) \in \mathbb{R}^{64}, \ z^{(j)} \in \mathbb{R}^{128}$
- $\phi_{\ell>0} \in \mathbb{R}^{256}$
- MLP: 5 layer

Ablation: What makes architecture work?

How to retrieve the latent code?

	τ	TimeFlow	TimeFlow w REPTILE
	0.05	$\textbf{0.324} \pm \textbf{0.013}$	0.363 ± 0.062
	0.10	$\textbf{0.250} \pm \textbf{0.010}$	0.343 ± 0.036
Electricity	0.20	$\textbf{0.225}\pm\textbf{0.008}$	0.312 ± 0.043
	0.30	$\textbf{0.212}\pm\textbf{0.007}$	0.308 ± 0.035
	0.50	$\textbf{0.194} \pm \textbf{0.007}$	0.305 ± 0.046
	0.05	0.095 ± 0.015	0.125 ± 0.025
	0.10	$\textbf{0.083} \pm \textbf{0.015}$	0.123 ± 0.032
Solar	0.20	0.072 ± 0.015	0.108 ± 0.021
	0.30	$\textbf{0.061} \pm \textbf{0.012}$	0.105 ± 0.027
	0.50	$\textbf{0.054} \pm \textbf{0.013}$	0.102 ± 0.021
	0.05	$\textbf{0.283} \pm \textbf{0.016}$	0.304 ± 0.026
	0.10	$\textbf{0.211}\pm\textbf{0.012}$	0.264 ± 0.009
Traffic	0.20	$\textbf{0.168} \pm \textbf{0.006}$	0.242 ± 0.019
	0.30	0.151 ± 0.007	0.218 ± 0.020
	0.50	$\textbf{0.139} \pm \textbf{0.007}$	0.216 ± 0.017

Gradient algo.

How to retrieve the latent code?

	Н	1	3	10	50
	96	0.259 ± 0.020	$\textbf{0.222} \pm \textbf{0.018}$	$\textbf{0.222} \pm \textbf{0.017}$	0.228 ± 0.019
Electricity	192	0.269 ± 0.020	$\textbf{0.230} \pm \textbf{0.026}$	0.232 ± 0.020	0.233 ± 0.026
	336	0.273 ± 0.033	$\textbf{0.262} \pm \textbf{0.031}$	0.264 ± 0.032	0.268 ± 0.032
	720	0.351 ± 0.038	0.303 ± 0.041	0.300 ± 0.040	$\textbf{0.299}\pm\textbf{0.039}$
	96	0.487 ± 0.196	$\textbf{0.179} \pm \textbf{0.003}$	0.181 ± 0.003	0.186 ± 0.003
SolanU	192	0.411 ± 0.088	$\textbf{0.193} \pm \textbf{0.015}$	0.195 ± 0.014	0.199 ± 0.013
Solarn	336	0.435 ± 0.153	$\textbf{0.189} \pm \textbf{0.013}$	0.203 ± 0.006	0.223 ± 0.012
	720	0.394 ± 0.173	0.209 ± 0.029	$\textbf{0.203}\pm\textbf{0.006}$	0.209 ± 0.027
	96	0.320 ± 0.038	$\textbf{0.215}\pm\textbf{0.037}$	0.219 ± 0.043	0.226 ± 0.046
Troffic	192	0.299 ± 0.023	$\textbf{0.206} \pm \textbf{0.023}$	0.209 ± 0.026	0.214 ± 0.027
Trainc	336	0.345 ± 0.038	$\textbf{0.226}\pm\textbf{0.030}$	0.228 ± 0.031	0.233 ± 0.032
	720	0.321 ± 0.034	$\textbf{0.259}\pm\textbf{0.038}$	0.260 ± 0.038	0.266 ± 0.039

Nb gradient steps

TimeFlow architecture

Motivations

References

Conclusion

Wide range of baselines on three datasets

Table 2: Mean MAE forecast results for adjacent time windows. H stands for the horizon. Bold results are best, underline results are second best. Look-back window size = 512

		C	ontinuous method	S	Discrete methods			
	Н	TimeFlow	DeepTime	Neural Process	Patch-TST	DLinear	AutoFormer	Informer
	96	$\underline{0.218\pm0.017}$	0.240 ± 0.027	0.392 ± 0.045	$\textbf{0.214}\pm\textbf{0.020}$	0.236 ± 0.035	0.310 ± 0.031	0.293 ± 0.0184
Electricity (192	$\underline{0.238\pm0.012}$	0.251 ± 0.023	0.401 ± 0.046	$\textbf{0.225}\pm\textbf{0.017}$	0.248 ± 0.032	0.322 ± 0.046	0.336 ± 0.032
Electricity	336	$\underline{0.265\pm0.036}$	0.290 ± 0.034	0.434 ± 0.075	$\textbf{0.242}\pm\textbf{0.024}$	0.284 ± 0.043	0.330 ± 0.019	0.405 ± 0.044
	720	$\underline{0.318\pm0.073}$	0.356 ± 0.060	0.605 ± 0.149	$\textbf{0.291}\pm\textbf{0.040}$	0.370 ± 0.086	0.456 ± 0.052	0.489 ± 0.072
	96	$\textbf{0.172}\pm\textbf{0.017}$	$\underline{0.197\pm0.002}$	0.221 ± 0.048	0.232 ± 0.008	0.204 ± 0.002	0.261 ± 0.053	0.273 ± 0.023
ColorH	192	$\textbf{0.198}\pm\textbf{0.010}$	$\underline{0.202\pm0.014}$	0.244 ± 0.048	0.231 ± 0.027	0.211 ± 0.012	0.312 ± 0.085	0.256 ± 0.026
JUIAITI	336	$\underline{0.207\pm0.019}$	$\textbf{0.200}\pm\textbf{0.012}$	0.241 ± 0.005	0.254 ± 0.048	0.212 ± 0.019	0.341 ± 0.107	0.287 ± 0.006
	720	$\textbf{0.215}\pm\textbf{0.016}$	$\underline{0.240\pm0.011}$	0.403 ± 0.147	0.271 ± 0.036	0.246 ± 0.015	0.368 ± 0.006	0.341 ± 0.049
	96	$\underline{0.216 \pm 0.033}$	0.229 ± 0.032	0.283 ± 0.028	$\textbf{0.201} \pm \textbf{0.031}$	0.225 ± 0.034	0.299 ± 0.080	0.324 ± 0.113
T	192	$\underline{0.208\pm0.021}$	0.220 ± 0.020	0.292 ± 0.023	$\textbf{0.195}\pm\textbf{0.024}$	0.215 ± 0.022	0.320 ± 0.036	0.321 ± 0.052
Traffic	336	$\underline{0.237 \pm 0.040}$	0.247 ± 0.033	0.305 ± 0.039	$\textbf{0.220} \pm \textbf{0.036}$	0.244 ± 0.035	0.450 ± 0.127	0.394 ± 0.066
	720	$\textbf{0.266}\pm\textbf{0.048}$	0.290 ± 0.045	0.339 ± 0.037	$\underline{0.268\pm0.050}$	0.290 ± 0.047	0.630 ± 0.043	0.441 ± 0.055
TimeFlow improvement		/	6.56 %	30.79 %	2.64 %	7.30 %	35.43 %	33.07 %

Motivations TimeFlow architecture Experiments 0000000000 Latent space Conclusion Forecast on sparsely observed look-back window (1/2)

Table 3: MAE results for forecasting with missing values in the look-back window. τ stands for the percentage of observed values in the look-back window. Best results are in bold. Look-back window size = 512

			Time	TimeFlow		DeepTime		Neural Process	
	Н	au	Imputation error	Forecast error	Imputation error	Forecast error	Imputation error	Forecast error	
Electricity	96	0.5 0.2 0.1	$\begin{array}{c} 0.151 \pm 0.003 \\ 0.208 \pm 0.006 \\ 0.272 \pm 0.006 \end{array}$	$\begin{array}{c} 0.239 \pm 0.013 \\ 0.260 \pm 0.015 \\ 0.295 \pm 0.016 \end{array}$	$\begin{array}{c} 0.209 \pm 0.004 \\ 0.249 \pm 0.006 \\ 0.284 \pm 0.007 \end{array}$	$\begin{array}{c} 0.270 \pm 0.019 \\ 0.296 \pm 0.023 \\ 0.324 \pm 0.026 \end{array}$	$\begin{array}{c} 0.460 \pm 0.048 \\ 0.644 \pm 0.079 \\ 0.740 \pm 0.083 \end{array}$	$\begin{array}{c} 0.486 \pm 0.078 \\ 0.650 \pm 0.095 \\ 0.737 \pm 0.106 \end{array}$	
	192	0.5 0.2 0.1	$\begin{array}{c} 0.149 \pm 0.004 \\ 0.209 \pm 0.006 \\ 0.274 \pm 0.010 \end{array}$	$\begin{array}{c} 0.235 \pm 0.011 \\ 0.257 \pm 0.013 \\ 0.289 \pm 0.016 \end{array}$	$\begin{array}{c} 0.204 \pm 0.004 \\ 0.244 \pm 0.007 \\ 0.282 \pm 0.007 \end{array}$	$\begin{array}{c} 0.265 \pm 0.018 \\ 0.290 \pm 0.023 \\ 0.315 \pm 0.025 \end{array}$	$\begin{array}{c} 0.461 \pm 0.045 \\ 0.601 \pm 0.075 \\ 0.461 \pm 0.045 \end{array}$	$\begin{array}{c} 0.498 \pm 0.070 \\ 0.626 \pm 0.101 \\ 0.724 \pm 0.090 \end{array}$	
Traffic	96	0.5 0.2 0.1	$\begin{array}{c} 0.180\pm0.016\\ 0.239\pm0.019\\ 0.312\pm0.020 \end{array}$	$\begin{array}{c} 0.219 \pm 0.026 \\ 0.243 \pm 0.027 \\ 0.290 \pm 0.027 \end{array}$	$\begin{array}{c} 0.272 \pm 0.028 \\ 0.335 \pm 0.026 \\ 0.385 \pm 0.025 \end{array}$	$\begin{array}{c} 0.243 \pm 0.030 \\ 0.293 \pm 0.027 \\ 0.344 \pm 0.027 \end{array}$	$\begin{array}{c} 0.436 \pm 0.025 \\ 0.596 \pm 0.049 \\ 0.734 \pm 0.102 \end{array}$	$\begin{array}{c} 0.444 \pm 0.047 \\ 0.597 \pm 0.075 \\ 0.731 \pm 0.132 \end{array}$	
ame	192	0.5 0.2 0.1	$\begin{array}{c} 0.176 \pm 0.014 \\ 0.233 \pm 0.017 \\ 0.304 \pm 0.019 \end{array}$	$\begin{array}{c} 0.217 \pm 0.017 \\ 0.236 \pm 0.021 \\ 0.277 \pm 0.021 \end{array}$	$\begin{array}{c} 0.241 \pm 0.027 \\ 0.286 \pm 0.027 \\ 0.331 \pm 0.025 \end{array}$	$\begin{array}{c} 0.234 \pm 0.021 \\ 0.276 \pm 0.020 \\ 0.324 \pm 0.021 \end{array}$	$\begin{array}{c} 0.477 \pm 0.042 \\ 0.685 \pm 0.109 \\ 0.888 \pm 0.178 \end{array}$	$\begin{array}{c} 0.476 \pm 0.043 \\ 0.678 \pm 0.108 \\ 0.877 \pm 0.174 \end{array}$	
TimeFlow improvement			/	/	18.97 %	11.87 %	61.88 %	58.41 %	

References

Figure 3: *Traffic dataset, sample 95.* In this figure, TimeFlow simultaneously imputes and forecasts at horizon 96 with a 10% partially observed look-back window of length 512.

Motivations TimeFlow architecture Experiments 000000000 Latent space Conclusion References Known vs New Samples

- TimeFlow *vs* PatchTST
- \Rightarrow Very close performances: Known \approx New / TimeFlow \approx PatchTST

Figure 4: Quantifying uncertainty in block imputation of two missing days in the *Electricity* dataset.

AN INTERESTING LATENT SPACE

■ For a given time series family {x^(j)}ⁿ_{j=1} we learn a family of codes {z^(j)}ⁿ_{j=1} in the latent space.

Figure 5: Latent space visualization

Figure 6: Bezier path between two points

$$B(\lambda) = (1-\lambda)^3 \mathbf{P}_0 + 3(1-\lambda)^2 \lambda \mathbf{P}_1 + 3(1-\lambda)\lambda^2 \mathbf{P}_2 + \lambda^3 \mathbf{P}_3$$

Figure 7: Autodecoded generate z_{λ} for several λ 's

Extract aligned representations

Motivations

- A well-aligned latent space makes it easier to perform downstream tasks
- This two-stage approach is underexplored

- Motivations: data augmentation, overcoming privacy/property constraints
- **Training procedure**: (i) Fit TimeFlow (ii) Learn a Denoising Diffusion Probabilistic Model (DDPM) on the learned representations
- Inference procedure: (i) Sample a new representation (ii) Decode the representation

Experimental setup

- Training on 8000 hourly time series (two-weeks long) from *Electricity*
- 2000 time series for testing and 2000 generated time series
- We compare with two baselines : DDPM only and TimeGan [Yoon et al., 2019]
- \blacksquare We want to assess the fidelity and diversity

	TimeFlow	DDPM	TimeCAN	Fully separable
_	+ DDPM	TimeGAN PM only		generation
Discriminative score \downarrow	0.1388	0.1704	0.4890	0.5000

A 💶	Motivations	TimeFlow architecture	Experiments	Latent space	000000000	Conclusion	References
	Experi	iments					

Experimental setup

- Training on 8000 hourly time series (two-weeks long) from *Electricity*
- 2000 time series for testing and 2000 generated time series
- We compare with two baselines : DDPM only and TimeGan [Yoon et al., 2019]
- We want to assess the fidelity and

TimeFlow + DDPM

DDPM only

TimeGan.

Synthesis

- 1 A semantically rich latent space
- 2 The representations can encode irregular/unaligned time series
- 3 First unconditional generation experiments are convincing

Limitations and perspectives

- **1** Unconditional generation experiments performed on only one dataset
- 2 Other downstream tasks should be explored to assess usefulness for downstream tasks

CONCLUSION

TimeFlow offers:

- Unified + Continuous approach for time series **imputation & forecasting**.
- Adaptability to new contexts through meta-learning optimization.
- High performances in all situations (same hyper-parameters)
- Wide range of experiments to measure the benefits of all components

Limitation:

■ Inference computation time (10-100 slower that competitors)

Perspectives:

Moving to multivariate Time-Series

■ Time Series... + context modeling

- Public transportation
- Agronomy : Growth model / yield prediction
- \blacksquare Time representation \Rightarrow Move to a time window
 - How transformers failed to represent local data
 - Memory networks
 - VQ-VAE / time series

- E. Dupont, A. Golinski, M. Alizadeh, Y. W. Teh, and A. Doucet. Coin: Compression with implicit neural representations. In <u>Neural Compression</u>: From Information Theory to Applications–Workshop@ ICLR 2021, 2021.
- E. Dupont, H. Kim, S. A. Eslami, D. J. Rezende, and D. Rosenbaum. From data to functa: Your data point is a function and you can treat it like one. In International Conference on Machine Learning, pages 5694–5725. PMLR, 2022.
- J. Ho, A. Jain, and P. Abbeel. Denoising diffusion probabilistic models. <u>Advances</u> in Neural Information Processing Systems, 33:6840–6851, 2020.
- C. Jiang, A. Sud, A. Makadia, J. Huang, M. Nießner, T. Funkhouser, et al. Local implicit grid representations for 3d scenes. In <u>Proceedings of the IEEE/CVF</u> <u>Conference on Computer Vision and Pattern Recognition</u>, pages 6001–6010, 2020.

- H. Kim, A. Mnih, J. Schwarz, M. Garnelo, A. Eslami, D. Rosenbaum, O. Vinyals, and Y. W. Teh. Attentive neural processes. <u>arXiv preprint arXiv:1901.05761</u>, 2019.
- S. Klocek, Ł. Maziarka, M. Wołczyk, J. Tabor, J. Nowak, and M. Śmieja. Hypernetwork functional image representation. In <u>Artificial Neural Networks</u> and Machine Learning–ICANN 2019: Workshop and Special Sessions: 28th International Conference on Artificial Neural Networks, Munich, Germany, September 17–19, 2019, Proceedings 28, pages 496–510. Springer, 2019.
- B. Mildenhall, P. P. Srinivasan, M. Tancik, J. T. Barron, R. Ramamoorthi, and R. Ng. Nerf: Representing scenes as neural radiance fields for view synthesis. Communications of the ACM, 65(1):99–106, 2021.

Motivations	TimeFlow architecture	Experiments	Latent space	Conclusion	References
Refere	nces III				

- S. Peng, Y. Zhang, Y. Xu, Q. Wang, Q. Shuai, H. Bao, and X. Zhou. Neural body: Implicit neural representations with structured latent codes for novel view synthesis of dynamic humans. In <u>Proceedings of the IEEE/CVF</u> <u>conference on computer vision and pattern recognition</u>, pages 9054–9063, 2021.
- S. N. Shukla and B. M. Marlin. Multi-time attention networks for irregularly sampled time series. arXiv preprint arXiv:2101.10318, 2021.
- V. Sitzmann, J. Martel, A. Bergman, D. Lindell, and G. Wetzstein. Implicit neural representations with periodic activation functions. <u>Advances in Neural</u> <u>Information Processing Systems</u>, 33:7462–7473, 2020.
- C. K. Williams and C. E. Rasmussen. <u>Gaussian processes for machine learning</u>, volume 2. MIT press Cambridge, MA, 2006.

TimeFlow architecture	Experiments	Latent space	Conclusion	References
ces IV				
	Ces IV	imeFlow architecture Experiments	imeFlow architecture Experiments Latent space \sim	imeFlow architecture Experiments Latent space Conclusion

- G. Woo, C. Liu, D. Sahoo, A. Kumar, and S. C. H. Hoi. Deeptime: Deep time-index meta-learning for non-stationary time-series forecasting. <u>CoRR</u>, abs/2207.06046, 2022.
- Y. Yin, M. Kirchmeyer, J.-Y. Franceschi, A. Rakotomamonjy, and P. Gallinari. Continuous pde dynamics forecasting with implicit neural representations. arXiv preprint arXiv:2209.14855, 2022.
- J. Yoon, D. Jarrett, and M. Van der Schaar. Time-series generative adversarial networks. Advances in neural information processing systems, 32, 2019.
- L. Zintgraf, K. Shiarli, V. Kurin, K. Hofmann, and S. Whiteson. Fast context adaptation via meta-learning. In <u>International Conference on Machine</u> Learning, pages 7693–7702. PMLR, 2019.