

L'EXTRACTION DES CONNAISSANCES À L'HEURE DES MODÈLES DE LANGUE

23 Octobre 2023 Séminaire MAIAGE

EKINOCS

Vincent Guigue vincent.guigue@agroparistech.fr https://vguigue.github.io

Langage humain vs Langage machine

Text Corpus (No Matched Graph)

 $^{^1}$ Qipeng Guo et al. (2020). "CycleGT: Unsupervised Graph-to-Text and Text-to-Graph Generation via Cycle Training". In: CoRR

Introduction • 0 0 0

NER, RE & Généralisation

Extensions & applications

IA Générative

Langage humain vs Langage machine

Indexation / Recherche d'Information

Text Corpus (No Matched Graph)

Allen Forest, a hip hop musician, was born in the year 1981. The music genre hip hop gets its origins from disco and funk music, and it is also which drum and bass is derived from.

Graph Dataset (No Matched Text)

¹ Qipeng Guo et al. (2020). "CycleGT: Unsupervised Graph-to-Text and Text-to-Graph Generation via Cycle Training". In: CoRR

NER, RE & Généralisation

Extensions & applications

Text Corpus (No Matched Graph)

IA Générative

Langage humain vs Langage machine

Indexation / Recherche d'Information

.000

Raisonnement / Complétion des connaissances

¹Dat Quoc Nguyen

Introduction

 2 Qipeng Guo et al. (2020). "CycleGT: Unsupervised Graph-to-Text and Text-to-Graph Generation via Cycle Training". In: <u>CoRR</u>

Enjeux autour des bases de connaissances

 Construire des bases de connaissances

Introduction

 Raisonner: règles + inférence logique, ontologies, systèmes experts

Enjeux autour des bases de connaissances

 Construire des bases de connaissances

Introduction

 Raisonner: règles + inférence logique, ontologies, systèmes experts

0 0 0 0

- ► Connexions w/ Machine Learning
 - ► Alignement / fusion
 - Plongement / TransE
 - Modèle de langue

 ³ Xiaojing Wu, Xingsi Xue, and Wenyu Hu (2021). "Argumentation Based Ontology Alignment Extraction".
 In: Advanced Machine Learning Technologies and Applications. ISBN: 978-3-030-69717-4

- Construire des bases de connaissances
- Raisonner: règles + inférence logique, ontologies, systèmes experts
- Connexions w/ Machine Learning
 - ► Alignement / fusion
 - Plongement / TransE
 - Modèle de langue

³ Antoine Bordes et al. (2013). "Translating embeddings for modeling multi-relational data". In: <u>NeurIPS</u>

Enjeux autour des bases de connaissances

 Construire des bases de connaissances

Introduction

 Raisonner: règles + inférence logique, ontologies, systèmes experts

- Connexions w/ Machine Learning
 - ► Alignement / fusion
 - Plongement / TransE
 - Modèle de langue

- Exhaustivité?
- ► Fiabilité?

³ Fabio Petroni et al. (2019). "Language Models as Knowledge Bases?" In: <u>EMNLP</u>. Association for Computational Linguistics

NER, RE & Généralisation

Extensions & applications

IA Générative

Challenges autour de l'extraction d'information

- Défi de la segmentation:
- Polysémie
- Fautes d'orthographe

- Segmenter les entités
- Identifier et/ou typer les entités
- ► Identifier + classer les liens

e.g. New York Times

 $\Rightarrow \mathsf{Morphologie} + \mathsf{s\acute{e}mantique} + \mathsf{contexte}$

NER, RE & Généralisation

Extensions & applications

IA Générative

Challenges autour de l'extraction d'information

- Défi de la segmentation:
- Polysémie
- Fautes d'orthographe

Boston

Washington

- Segmenter les entités
- Identifier et/ou typer les entités
- Identifier + classer les liens

e.g. New York Times

 $\Rightarrow \mathsf{Morphologie} + \mathsf{s\acute{e}mantique} + \mathsf{contexte}$

Philadelphia

Base de connaissances

- + Efficace / passage à l'échelle
- + Garanties sur les résultats
- Cout de construction / maintenance
- Manque de robustesse aux erreurs

Extraction d'information

- Cout d'exploitation (LLM)
- Manque de garanties/fiabilité
- + Cout de construction/MAJ
- + Robustesse aux erreurs

Des outils aux caractéristiques complémentaires

NAMED ENTITY RECOGNITION RELATION EXTRACTION & GÉNÉRALISATION

[Thèse de Bruno Taillé]

Introduction Extensions & applications IA Générative Extraction des entités nommées Jobs founded San Francisco Steve Apple in S-ORG B-LOC E-LOC **B-PER** E-PER 0 0 0

IOBES : O = Other (not in an entity) B = Beginning I = Inside E = End S = Single 4

Approches historiques:

- Extraction de caractéristiques (majuscules, terminaisons, lexiques, ...)
- Modélisation des probabilités dans la séquence
 - Chaines de Markov Cachées HMM–
 - Champs Aléatoires Conditionnels CRF–

⁴ Bruno Taillé (2022). "Contextualization and Generalization in Entity and Relation Extraction". PhD thesis. Sorbonne Université

Révolutions successives: représentation des mots & contextualisation

- Pretrained word embeddings (Huang 2015) SENNA
- Character-level word embeddings (Lample 2016) SENNA + char-BiLSTM
- Contextualized embeddings (Peters 2018) ELMo (Akbik 2018) Flair (Devlin 2019) BERT

⁴ Bruno Taillé (2022). "Contextualization and Generalization in Entity and Relation Extraction".

Extraction des entités nommées

ELMo (Peters 2018)	
 char-CNN word representation (ELMo[0]) BiLSTM LM at a word level 	BERT _{LARGE}
 Weighted sum fusion (learned weights) 	ELMo
Flair (Akbik 2018)	Flair
 BiLSTM LM at a character level Word represented with the concatenation of its ends 	TagLM (SENNA + L
	SENNA + char BiLS
BERT (Devlin 2019)	SENNA
Transformer I M at a subword level (WordPiece)	L

- Masked LM and Next Sentence Prediction
- BERT_{LARGE} feature-based = frozen LM

(Peters 2018) Deep contextualized word representations, NAACL-HLT 2018

(Akbik 2018) Contextual String Embeddings for Sequence Labeling, COLING 2018

(Devlin 2019) BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding, NAACL-HLT 2019

CoNLLO3 Test Set (F1)							
BERTLARGE	(Devlin 2019)	92.8					
ELMo	(Peters 2018)	92.2					
Flair	(Akbik 2018)	92.0*					
TagLM (SENNA + LM)	(Peters 2017)	91.9					
SENNA + char BiLSTM	(Lample 2016)	90.9					
SENNA	(Huang 2015)	88.8					

Superposition lexicale: apprentissage vs test

Proportion of mentions in test set are seen during training.

3 types of mentions :

Exact match	Mention seen with the same type	Train :	Barack Obama	(PER)
Partial match	At least one non stop-word seen in a mention of same type	Test :	Donald Trump Barack Obama Georges Bush	(PER) (PER) (PER)
New	All non stop-words are new		Washington DC. Obama	<mark>(LOC)</mark> (PER)

(Augenstein 2017) Generalisation in named entity recognition: A quantitative analysis, CSL 2017 (Moosavi 2017) Lexical Features in Coreference Resolution: To be Used With Caution, ACL 2017

Superposition lexicale: apprentissage vs test

CoNLL 2003

- News articles
- 4 languages (English, German, Dutch, Spanish)
- 4 types (PER, ORG, LOC, MISC)

OntoNotes 5.0

- 6 genres (news, conversations, web...)
- 3 languages (English, Arab, Chinese)
- 18 types (11 entities + 7 values)

WNUT 17 (Workshop on Noisy User-generated Text)

- Web Text (Twitter, Reddit, Youtube, Stack Overflow)
- English
- 6 types (PER, LOC, Corporation, Group, Creative Work, Product)

2.6 Entity Names Annotation

Names (often referred to as "Named Entities") are annotated according to the following set of types:

PERSON	People, including fictional
NORP	Nationalities or religious or political groups
FACILITY	Buildings, airports, highways, bridges, etc.
ORGANIZATION	Companies, agencies, institutions, etc.
GPE	Countries, cities, states
LOCATION	Non-GPE locations, mountain ranges, bodies of water
PRODUCT	Vehicles, weapons, foods, etc. (Not services)
EVENT	Named hurricanes, battles, wars, sports events, etc.
WORK OF ART	Titles of books, songs, etc.
LAW	Named documents made into laws
LANGUAGE	Any named language

The following values are also annotated in a style similar to names:

DATE	Absolute or relative dates or periods
TIME	Times smaller than a day
PERCENT	Percentage (including "%")
MONEY	Monetary values, including unit
QUANTITY	Measurements, as of weight or distance
ORDINAL	"first", "second"
CARDINAL	Numerals that do not fall under another type

Superposition lexicale: apprentissage vs test

Séparation des performances: les modèles

Transformer = contextualisation globale (vs LSTM = locale)

Séparation des performances: les modèles

Transformer = contextualisation globale (vs LSTM = locale)

Introc	luction
	action

Séparation des performances: les modèles

Transformer = contextualisation globale (vs LSTM = locale)

WNUT*

Séparation des performances: les résultats

OntoNotes*

 $\blacksquare Map + ELMo[0] = Map + ELMo = BiLSTM + ELMo[0] = BiLSTM + ELMo$

Transformer & <u>NER</u>

10/34

Founded by

Superposition des ensembles d'apprentissage & test

Test Mentions

Test Relations

Relation Extraction vs End-to-end Relation Extraction

Superposition des ensembles d'apprentissage & test

Relation Extraction vs End-to-end Relation Extraction

Problème supplémentaire: la définition des métriques

(Bekoulis 2018a) Joint Entity Recognition and Relation Extraction as a Multi-head Selection Problem, Expert Systems with Applications 2018

IA Générative

Dépasser les approches pipelines... Un challenge!

Conclusions intermédiaires

- Les performances en extraction d'information sont sur-évaluées
 - Mémorisation vs Généralisation
 - ► Nouveaux benchmark: WNUT, Cross-NER
- Le problème de **transfert** est critique:
 - En cout d'étiquetage ET en perte de performances
- Modifier un modèle de langue en profondeur = mauvaise idée
 - ► RLHF
 - Modification légère: Prefix tuning, adapter, LoRA, pipeline

Domain	unlabeled Corpus		s	Labeled NER		R	Entity Catagorias		. Po	Sci	. /					
Domain	# paragraph	# sentence	# tokens	# Train	# Dev	# Test	Entity Categories	-1	uters .		ence .	usic C	Mer.	A/		
Reuters	-	-	-	14,987	3,466	3,684	person, organization, location, miscellaneous		100.0	26.7	25.0	24.0	27.1	25.4	100	
Polition	2.76M	0.07M	176 56M	200	541	651	politician, person, organization, political party, event,	Reuters	100.0	55.7	25.9	24.0	27.1	23.4	- 90	
Fonues	2.70101	9.07101	170.50101	200	541	051	election, country, location, miscellaneous	Politics	35.7	100.0	28.8	27.2	31.6	24.9		ş
Notural							scientist, person, university, organization, country, location, discipli	ronaco							00	1
Soionoo	1.72M	5.32M	98.50M	200	450	543	enzyme, protein, chemical compound, chemical element, event,	Science	25.9	28.8	100.0	25.1	28.9	28.0	- 70	ž
Science							astronomical object, academic journal, award, theory, miscellaneor								- 60	000
Musia	2.40M	0.82M	104.62M	100	280	156	music genre, song, band, album, musical artist, musical instrumen	Music ·	24.0	27.2	25.1	100.0	30.2	22.1		0110
wiusic	3.49WI	9.02111	194.02101	100	380	450	award, event, country, location, organization, person, miscellaneou								- 50	2gr
T itomatarea	2.60M	0.1714	177.22M	100	400	416	book, writer, award, poem, event, magazine, person, location,	Liter.	27.1	31.6	28.9	30.2	100.0	24.8	- 40	1.00
Literature	2.0910	9.171	177.551	100	400	410	organization, country, miscellaneous									
Artificial	07.041	287 621	5 20M	100	250	421	field, task, product, algorithm, researcher, metrics, university,	AL	25.4	24.9	28.0	22.1	24.8	100.0	- 30	
Intelligence	97.04K	287.02K	5.20M	100	350	451	country, person, organization, location, miscellaneous							_		

⁴ Zihan Liu et al. (2020). "CrossNER: Evaluating Cross-Domain Named Entity Recognition". In: arXiv

RECONNAISSANCE D'ENTITÉS NOMMÉES: PISTES DE RECHERCHE & EXPLOITATION DES ALGORITHMES

⁵ Chen Liang et al. (2020). "Bond: Bert-assisted open-domain named entity recognition with distant supervision". In: <u>ACM SIGKDD</u>

Application à l'analyse des descriptions de flores

Extraction d'Information \Rightarrow Clé-valeur

<ORGAN> Flowers </ORGAN> 4-merous. Calyx aestivation valvate, campanulate, 2-3.6mm long, abaxially <DESC-SURFACE> glabrous </DESC-SURFACE>

solitary flowers; bracts 4–8, chartaceous, ovate or transverse-elliptic, $0.4-1.6 \times 0.4-1.5$ mm, marginally ciliolate with eglandular hairs, apically obtuse, obtuse and cuspidate, or acute, abaxially glabrous; pedicel 1–1.2 mm long, reduced and hidden by overlapping bracts, glabrate with eglandular hairs; differentiated apical bracteoles 2, distinct, chartaceous, partially enveloping calyx lobes, covering 50–67% of calyx, ovate, $1.5-2(-2.5) \times 1.6-3$ mm, marginally ciliolate or ciliate with eglandular hairs, apically obtuse and cuspidate or less often acuminate, the surface smooth, abaxially and adaxially glabrous. Flowers 4-merous. Calyx aestivation valvate, campanulate, (2-)2.4-3.3 mm long; tube slightly angled, 0.8-1.3 mm long,

 TABLE I

 Statistics on the dataset : classes, Number or distinct words in each class and number of occurrences in the corpus.

Set	Class	Occurrences	Number of words
	Flower	22890	23
	Fruit	4968	10
22	Habit	1920	3
\mathcal{Y}_0	Leaf	4364	5
	Part-of	23849	25
	Stem-root	3296	7
	Color	18342	15
	Disposition	8405	21
22	Form	24816	64
\mathcal{Y}_1	Position	10936	13
	Surface-texture	18325	23
	Surface-texture	18325	23

⁶ Maya Sahraoui et al. (2022). "NEARSIDE: Structured kNowledge Extraction frAmework from Specles DEscriptions". In: Biodiversity Information Science and Standards

IA Générative

Application à l'analyse des descriptions de flores

Models	Precision	Recall	Score F1	
Baseline	100/93.83	75.74/70.82	86.19/79.26	
Baseline w/ lm	100/95.15	85.28/80.82	92.05/86.54	
Baseline w/self-train	100/94.42	84.29/80.15	91.47/86.22	

MODEL'S ABILITY TO DETECT AND CLASSIFY NEW ENTITIES, OUT OF THE TRAIN SET'S DISTRIBUTION. (DETECTION/CLASSIFICATION SCORES)

Models	Precision	Recall	Score F1	
Baseline	100/92.33	64.78/54.52	78.62/62.76	
Baseline w/ lm	100/89.88	69.21/57.73	81.80/65.17	
Baseline w/self-train	100/90.76	68.95/57.82	81.62/64.90	

 Burmannia tenella Bentham, Hockr's J. Bot, Kev Gard. Misc. 7: 12. 1855; Maliane, Ark. Bot. Zak-20, 1934; Jonker, Monges Burmann, 77. 1938. Type: Brazil. Amazonas: "In sylvis arenosis II. Vauges," Jan 1835, Soprer 23, Zhubabiyer, K. J. I. could net be sectimated whether Draw States and States and States and States and States and States and Jabeled "Oct 1832-Jan 1833. Prope Panuté (-Ipanoré)" musik beomsidered as isotypes of this species. Teg. 18.

Burmannia amazonica Schlechter, Verh. Bot. Vereins Prov. Brandenburg 47: 102. 1905. Type. Brazil. Amazonas: Rio Marmelos, near falls, Rio Madeira, Ule 6124 (holotype, B; isotype, HBG).

Saprophysic herds, 8–32 cm high. Storew white, branched or not. Leaves white orate to according transplar-roate, 1:3.64-65 mm long, 0:4-0.96-1.3 mm wide, agea scate to accordinate. Jr. Afforestrone a biferate cincinna, cincinni 2:54-53 mm long, 0:4-0.96 mm long, 0:4-0.96 mm long, 0:4-0.96 mm long, 0:4-0.97 mm long,

17/34

 \Rightarrow Retrouver les **entités dans les images** à partir d'approche texte/image

⁶ Xinyu Wang et al. (2022). "ITA: Image-Text Alignments for Multi-Modal Named Entity Recognition". In: <u>NAACL</u>

Perspective: extension vers la multimodalité

\Rightarrow Retrouver les **entités dans les images** à partir d'approche texte/image

solitary flowers; bracts 4–8, chartaceous, ovate or transverse-elliptic, $0.4-1.6 \times 0.4-1.5$ mm, marginally ciliolate with eglandular hairs, apically obtuse, obtuse and cuspidate, or acute, abaxially glabrous; pedicel 1–1.2 mm long, reduced and hidden by overlapping bracts, glabrate with eglandular hairs; differentiated apical bracteoles 2, distinct, chartaceous, partially enveloping calyx lobes, covering 50–67% of calyx, ovate, $1.5-2(-2.5) \times 1.6-3$ mm, marginally ciliolate or ciliate with eglandular hairs, apically obtuse and cuspidate or less often acuminate, the surface smooth, abaxially and adaxially glabrous. Flowers 4-merous. Calyx aestivation valvate, campanulate, (2-)2.4-3.3 mm long; tube slightly angled, 0.8-1.3 mm long,

\Rightarrow Construire des systèmes pédagogiques pour l'identification de taxons

Dynamic NER

Cas extrême où les entités changent de type tout le temps!

Exemple: détecter les joueurs de NBA... Avec le résultat du match: victoire/défaite

A trio of 20 - point - plus efforts and a 17 - rebound night helped hand the Cavs a surprising home loss , their first defeat of the season overall . Dennis Schroder 's season - high 28 points led the way , while Kent Bazemore put together a stellar 25 - point tally while often going up against LeBron James 'typically stingy defense . Dwight Howard dominated down low with 17 boards , 15 of them on the defensive glass . Atlanta managed a strong 51 percent success rate from the field , helping to key the victory . Kyrie Irving posted 29 points , which came on a season - high 27 shot attempts . Kevin Love 's 24 - point , 12 - rebound double - double was next , while LeBron James posted 23 points . Poor shooting was Cleveland 's undoing , as they posted a 37 percent success rate from the field ,

and 26 percent on 42 shot attempts from beyond the arc .

Same entity Different context Different Label

LeBron James and Kyrie Irving stepped up for a second straight night in Kevin Love 's absence, combining for 60 points on 23 - of -41 shooting. Irving added a career - high 13 assists, six rebounds and a steal, while James posted nine rebounds and six assists. Richard Jefferson supplied 10 points in Love 's stead, and Tristan Thompson hauled in 15 rebounds. A pair of 10 - point efforts from Channing Frye and Iman Shumpert paced the second unit . Giannis Antetokoumpo 's 28 points led Milwaukee, and Jabari Parker was right behind him with 27 points, as the duo tried to keep pace with Cleveland 's Big Two. However, John Henson, Tony Snell, and Matthew Dellavedova, the remaining members of the first unit, could only combine for nine points between them . Malcolm Brodgon supplied 11 points off the bench as the only other double - digit scorer.

⁶ Tristan Luiggi et al. (2023). "Dynamic Named Entity Recognition". In: ACM SAC

NER, RE & Généralisation

Extensions & applications 000000000

IA Générative

Discussion D-NER

Proposition de nouvelle ressource

			RotoWire	
Models	Set	DNET	DNER	Entity
	Seen	0.81	0.66	0.86
BEDT-Linear	Seen/Unseen	0.81	0.65	0.85
DER I-Lineai	Unseen	0.80	0.63	0.81
	Seen	0.81	0.67	0.88
REDT CI S	Seen/Unseen	0.81	0.68	0.87
DERI-CLS	Unseen	0.80	0.67	0.85
	Seen	-	0.67	0.90
REDT ODE	Seen/Unseen	-	0.67	0.88
DER I-CRI	Unseen	-	0.66	0.87
	Seen	-	0.61	0.82
REDT CLS CDE	Seen/Unseen	-	0.61	0.81
DERT-CLS-CRF	Unseen	-	0.60	0.79

- Analyse de l'intérêt de la couche CRF
- Distinction in-domain / ood
- $\Rightarrow\,$ Des perspectives vers l'encodage de la position des mots

Introduction NER, RE & Généralisation Extensions & applications 0000000000

IA Généra<u>tive</u>

1.00

0.75

0.50

- 0.00

-0.25

-0.50

-0.75

Détection des entités dans un document structuré

Encodage de la position dans les documents:

⁷ A. Kazemnejad (2019). <u>Transformer Architecture: The Positional Encoding</u>.

IA Généra<u>tive</u>

Détection des entités dans un document structuré

33 Rendle Street	Tax Invoice	Invoice Number	
PO Box 308 Altkenvale Townsville QLD 4814 p. 07 4775 4344	#740.91 07/11/2009	Invoice Date	
PACIFIC PLAN PRINTING The Taylor Family Trust ties Ship To:		Shipping Address	
05823 Ani 01771-440	nderson Fall, Gislasonfurt, CT 402	Customer Name	Texte
To: Stefan Rice Apt. 887 7977 Guillermo Brock, New		Billing Address	
Yaekoport, ME 93650		Quantity	Image
YOUR PURCHASE ORDER No.	TERMS DATE	SKU	Coordonnées des mots
OTY. ITEM NO. DESCRIPTION	Net 50 07/11/2009 PRICE EXTENDED CODE	Description	
719 5602ry1 Tigerl Tigerl Behold the Man 850 7155vv9 Mohrer Hight In Death Frond	496.03 615.57 61% S 800.13 774.03 29% S	Unit Price	
		Total	Puiser dans les modalités pour
84	ALE AMOUNT 781 13	Balance Due	améliorer les performances
Bank Account Details: CODE RATE OST SALE AMDURT Pasific Plan Printing 81% S 298.84 781.13 BSB: 0.64-817 Acc: 1079-1644 TO	FREIGHT 325.75 GST 210.84 DTAL INC GST 748.52 PAID TODAY		
COLLECTED BY: PRINT NAME:	ALANCE DUE Stor.74	7	

 7 Yiheng Xu et al. (2020). "Layoutlm: Pre-training of text and layout for document image understanding". In: <u>ACM SIGKDD</u>

NER, RE & Généralisation

Extensions & applications 000000000

IA Générative

Détection des entités dans un document structuré

 \Rightarrow A quel moment souhaite-t-on mélanger les modalités?

⁷ Yupan Huang et al. (2022). "LayoutLMv3: Pre-training for Document AI with Unified Text and Image 21/34

NER, RE & Généralisation

Extensions & applications 00000000000

8

IA Générative

Optimisation robuste pour la généralisation

Optimisation de sous-espaces

Création de *régions homogènes* dans l'espace de représentation

 \Rightarrow Améliorer l'espace de représentation

⁸ Mitchell Wortsman et al. (2021). Learning Neural Network Subspaces.

NER, RE & Généralisation

Extensions & applications 00000000000

IA Générative

Prefix-tuning & optimisation

- Impossible de maintenir plusieurs versions des paramètres d'un LLM
- Possible de travailler sur des approches parcimonieuses
- \Rightarrow Amélioration dans diverses tâches GLUE... Mais pas encore en NER 9

⁹ Louis Falissard, Vincent Guigue, and Laure Soulier (2023). "Improving generalization in large language models by learning prefix subspaces". In: <u>EMNLP</u>

Contextualisation des phrases à analyser

Erreurs en NER = problème de contextualisation?

Comment analyser la phrase suivante?

Azawad reprend les armes

Contextualisation des phrases à analyser

Erreurs en NER = problème de contextualisation?

En allant chercher du contexte sur internet (ou ailleurs):

Azawad reprend les armes

Le Mouvement national de l'Azawad (MNA), créé en novembre 2010 Le secrétaire général du mouvement est Ahmed Ould Sidi Mohamed

Contextualisation des phrases à analyser

Erreurs en NER = problème de contextualisation?

Input Sentence:	Retrieved Texts:
senate democrats eliminated the nuclear option when they had the majority a few years ago , over republican objections.	President Obama called for eliminating the legislative filibuster last month , which could occur if Democrats retake the Senate Some Republicans say it 's time to undo a wrong committed by Reid . Senate Republicans are considering using the "nuclear option " to end a potential Democratic filibuster and confirm Neil Gorsuch to the Supreme Court . Senate Republicans deployed the "nuclear option" on Wednesday to drastically reduce the time it takes to confirm hundreds of President Trump 's nominees .

 10 Xinyu Wang et al. (2021). "Improving Named Entity Recognition by External Context Retrieving and Cooperative Learning". In: <u>ACL</u>

Contextualisation des phrases à analyser

Erreurs en NER = problème de contextualisation?

Contextualisation des phrases à analyser

Erreurs en NER = problème de contextualisation?

Amélioration des performances: significatives... Mais décevantes

	Social Media		News		Biomedical		Ecommono	
	WNUT-16	WNUT-17	CoNLL-03	CoNLL++	BC5CDR	NCBI	E-commerce	
Evaluation: W/ CONTEXT								
W/ CONTEXT	57.43 [†]	60.20^{\dagger}	93.27 [†]	94.56 [†]	90.76 [†]	89.01 [†]	83.15 [†]	
$CL-L_2$	58.61 [†]	60.26^{+}	93.47 [†]	94.62 [†]	90.99 [†]	89.22^{\dagger}	83.87 [†]	
CL-KL	58.98 [†]	60.45^{\dagger}	93.56 [†]	94.81 [†]	90.93 [†]	88.96^{\dagger}	83.99 [†]	

 $^{^{10}}$ Xinyu Wang et al. (2021). "Improving Named Entity Recognition by External Context Retrieving and Cooperative Learning". In: <u>ACL</u>

Contextualisation et modèles de langue

- Modèle de langue = sélection des documents du contexte (BERT-Score)
- Contextualisation directe possible avec un modèle de langue
- Ouverture: reformulation de phrase
- Voire recherche directe des entités

Expériences préliminaires: recherche de prompts

Example of prompt	Persona	Reflection pattern	Answer format
Could you provide more information about the entities in the provided text.			
Act as an expert linguist. Could you provide more information about the entities in the provided text. Provide outputs that an expert linguist would create.	\checkmark		
Could you provide more information about the entities in the provided text. Moreover, Please address any potential ambiguities or limitations in your answer in order to provide a more complete and accurate response.		\checkmark	
Could you provide more information about the entities in the provided text. You should enumerate your answers as a list of propositions prefixed by a number.			\checkmark
You act as an expert linguist. Could you provide more information about the entities in the provided text. Provide outputs that an expert linguist would create. Moreover, Please address any potential ambiguities or limitations in your answer in order to provide a more complete and accurate response. Provide outputs that an expert linguist would create.	\checkmark	\checkmark	\checkmark

\Rightarrow Dépassement des résultats de CL-NER¹¹

¹¹Herserant et al. 2024. En soumission

Contextualisation et modèles de langue

- Modèle de langue = sélection des documents du contexte (BERT-Score)
- Contextualisation directe possible avec un modèle de langue
- Ouverture: reformulation de phrase
- Voire recherche directe des entités

Expériences préliminaires: premiers problèmes

Task	Variation	Empty	Denied	Fail	Correct
	Classic	214 (6.31%)	374 (11.02%)	441 (12.99%)	2365 (69.68%)
	Persona	215 (6.33%)	257 (7.57%)	262 (7.72%)	2660 (78.37%)
Reformulation	Reflexion pattern	209 (6.16%)	433 (12.76%)	216 (6.36%)	2536 (74.72%)
	Answer format	-	-	-	-
	All	118 (3.48%)	310 (9.13%)	103 (3.03%)	2863 (84.35%)
	Classic	214 (6.31%)	313 (9.22%)	484 (14.26%)	2383 (70.21%)
	Persona	225 (6.63%)	222 (6.54%)	320 (9.43%)	2627 (77.40%)
Named Entity Recognition	Reflexion pattern	221 (6.51%)	328 (9.66%)	273 (8.04%)	2572 (75.78%)
	Answer format	-	-	-	-
	All	134 (3.95%	258 (7.60%)	109 (3.21%)	2893 (85.24%)
	Classic	237 (6.98%)	347 (10.22%)	415 (12.23%)	2395 (70.57%)
Context Variation	Persona	221 (6.51%)	285 (8.40%)	256 (7.54%)	2632 (77.55%)
	Reflexion pattern	209 (6.16%)	338 (9.96%)	215 (6.33%)	2632 (77.55%)
	Answer format	-	-	-	-
	All	136 (4.01%)	292 (8.60%)	91 (2.68%)	2875 (84.71%)

25/34

 Introduction	NER, RE & Généralisation	Extensions & applications	0000000000	IA Générative
Conclusio	n			

- Auto-supervision
- Multi-modalité
- Dynamicité + encodage de la position
- Technique d'optimisation
- Contextualisation
- ► Gangner en performances en NER est difficile

Et publier en NER est encore plus difficile!

▶ 100% de performance n'est pas un objectif réaliste

EXTRACTION D'INFORMATION & IA générative

Extensions & applications

Vers un détécteur d'entité génératif

S'il s'agit d'une traduction humain/machine... Autant partir d'un traducteur!

Une idée pas si récente:

 11 Colin Raffel et al. (2020). "Exploring the limits of transfer learning with a unified text-to-text transformer". In: The Journal of Machine Learning Research 1

NER, RE & Généralisation

Extensions & applications

IA Générative

•0000000

Vers un détécteur d'entité génératif

S'il s'agit d'une traduction humain/machine... Autant partir d'un traducteur!

Introduction NER, RE & Généralisation Extensions & applications

0 • 0 0 0 0 0 0

Extraction d'information & question answering

Résoudre l'extraction en posant des questions:

Multi Turn Question Templates :

Which company is mentioned in the text?

Who founded _____?

¹¹ Xiaoya Li et al. (2019). "Entity-Relation Extraction as Multi-Turn Question Answering". In: <u>ACL</u>

Introduction NER, RE & Généralisation Extensions & applications IA Générative

0000000

Extraction d'information & question answering

Résoudre l'extraction en posant des questions:

¹¹ Xiaoya Li et al. (2019). "Entity-Relation Extraction as Multi-Turn Question Answering". In: <u>ACL</u>

Introduction NER, RE & Généralisation Extensions & applications IA Générative •••••••••• Extraction d'information & question answering

Résoudre l'extraction en posant des questions:

¹¹ Xiaoya Li et al. (2019). "Entity-Relation Extraction as Multi-Turn Question Answering". In: ACL

Extraction d'information & reformulation

En posant les bonnes questions:

V	Soit la phrase complexe suivante: Le chat de la maison se balade dans le jardin, il est tigré et joue souvent avec celui des voisins. Peux-tu décomposer la phrase en propositions élémentaires?	ľ
\$	Bien sûr, voici la décomposition de la phrase complexe en propositions élémentaires :	0 <i>6</i> 7
	1. Le chat de la maison se balade dans le jardin.	
	2. Il est tigré.	
	3. Il joue souvent avec celui des voisins.	
	Chacune de ces propositions exprime une idée distincte de la phrase complexe d'origine.	

Le problème devient trivial

 \Rightarrow Ouverture vers un sentence-BERT-Score

Extraction d'information & reformulation

Ou en posant la question directement:

Soit la phrase complexe suivante: Le chat de la maison se balade dans le jardin, il est tigré et joue souvent avec celui des voisins. Peux-tu extraire la liste des entités et leurs relations?

Bien sûr ! Voici la liste des entités et de leurs relations dans la phrase $\Box \Box \nabla$ complexe que vous avez fournie :

- 1. Entités :
 - Le chat de la maison
 - Le jardin
 - · Le chat des voisins
- 2. Relations:
 - Le chat de la maison se balade dans le jardin.
 - Le chat de la maison est tigré.
 - Le chat de la maison joue souvent avec le chat des voisins.

NER, RE & Généralisation

Extensions & applications

IA Générative

00000000

Métriques associées aux IA Génératives

L'IA Générative = beaucoup de **problèmes pour évaluer** les sorties du système!

Approche BLEU / ROUGE \searrow ! Besoin de métriques sur les contenus

 \Rightarrow BERT-Score

¹² Tianyi Zhang et al. (2019). "BERTScore: Evaluating Text Generation with BERT". In: ICLR

NER, RE & Généralisation

Extensions & applications

plications I.

IA Générative 000000

Métriques associées aux IA Génératives

L'IA Générative = beaucoup de **problèmes pour évaluer** les sorties du système!

Approche BLEU / ROUGE >>> ! Besoin de métriques sur les contenus

Générer des questions puis répondre sur la source et la cible

IAGen pour évaluer IAGen

¹² Thomas Scialom et al. (2021). "QuestEval: Summarization Asks for Fact-based Evaluation". In: EMNLP. 30/34

A-t-on encore besoin d'extraction d'information?

Enjeux autour du RAG - Retrieval Augmented Generation-

Comment répondre à une question complexe?

- 1 Décomposer la question (avec un LLM)
- 2 Rechercher les documents pertinents / moteur de recherche
- 3 Rechercher les paragraphes/phrases pertinents (avec un LLM / BERT-score)
- 4 Construire une réponse par raisonnement automatique (LLM)
- 5 et/ou Dialoguer avec les documents Q/A (LLM)

NER, RE & Généralisation

Extensions & applications

IA Générative

000000000

Raisonnement automatique

Limite des modèles de langue: inaptitude au calcul !

Comment aborder le raisonnement automatique?

What is 3*4+9*9? Give the answer first and then the explanation.

The answer is 99.

To solve this expression, we follow the order of operations or PEMDAS rule, which stands for Parentheses, Exponents, Multiplication and Division, and Addition and Subtraction.

There are no parentheses or exponents, so we start with multiplication and division.

Multiplying 3 by 4 gives 12, and multiplying 9 by 9 gives 81.

Then, we add these two products together, giving us:

12 + 81 = 93

Therefore, 34+99 equals 93.

NER, RE & Généralisation

Extensions & applications

pplications

IA Générative 00000000

Raisonnement automatique

Limite des modèles de langue: inaptitude au calcul !

Comment aborder le raisonnement automatique?

What is 3*4+9*9? Give the answer first and then the explanation.

The answer is 99.

To solve this expression, we follow the order of operations or PEMDAS rule, which stands for Parentheses, Exponents, Multiplication and Division, and Addition and Subtraction.

There are no parentheses or exponents, so we start with multiplication and division.

Multiplying 3 by 4 gives 12, and multiplying 9 by 9 gives 81.

Then, we add these two products together, giving us:

12 + 81 = 93

Therefore, 34+99 equals 93.

NER, RE & Généralisation

Extensions & applications

cations IA Générative

re 000000000

Raisonnement automatique

Limite des modèles de langue: inaptitude au calcul !

Comment aborder le raisonnement automatique?

Reasoning	Passage (some parts shortened)	Question	Answer	BiDAF
Subtraction (28.8%)	That year, his Untitled (1981) , a painting of a haloed, black-headed man with a bright red skeletal body, de- picted amid the artists signature scrawls, was sold by Robert Lehrman for \$16.3 million, well above its \$12 million high estimate .	How many more dol- lars was the Untitled (1981) painting sold for than the 12 million dollar estimation?	4300000	\$16.3 million
Comparison (18.2%)	In 1517, the seventeen-year-old King sailed to Castile. There, his Flemish court In May 1518, Charles traveled to Barcelona in Aragon.	Where did Charles travel to first, Castile or Barcelona?	Castile	Aragon
Selection (19.4%)	In 1970, to commemorate the 100th anniversary of the founding of Baldwin City, Baker University professor and playwright Don Mueller and Phyllis E. Braun, Business Manager, produced a musical play entitled The Ballad Of Black Jack to tell the story of the events that led up to the battle.	Who was the Uni- versity professor that helped produce The Ballad Of Black Jack, Ivan Boyd or Don Mueller?	Don Mueller	Baker

¹³ Dheeru Dua et al. (2019). "DROP: A Reading Comprehension Benchmark Requiring Discrete Reasoning Over Paragraphs". In: Proceedings of NAACL-HLT

NER, RE & Généralisation

Extensions & applications

IA Générative

000000000

Raisonnement automatique

Limite des modèles de langue: inaptitude au calcul !

Comment aborder le raisonnement automatique?

Task: Basic Math Problem: Before December, customers buy 1346 ear muffs from the mall. During December, they buy 6444, and there are none. In all, how many ear muffs do the customers buy?

Predicted Answer: 1346.0 × Generated Program:

answer = 1346.0 + 6444.0 print(answer) # Result ==> 7790.0

Gold Answer: 7790.0 ✓

Task: Muldiv

Problem: Tickets to the school play cost 6 for students and 8 for adults. If 20 students and 12 adults bought tickets, how many dollars' worth of tickets were sold?

Predicted Answer: 48 × Generated Program: a=20×6

```
b=12*8
c=a+b
answer=c
print(answer)
# Result ==> 216.0
```

Gold Answer: 216 🗸

13

¹³ Swaroop Mishra et al. (2022). "LILA: A Unified Benchmark for Mathematical Reasoning". In: Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing

NER, RE & Généralisation

Extensions & applications

Raisonnement automatique

Limite des modèles de langue: inaptitude au calcul !

Comment aborder le raisonnement automatique?

Exemple dune question numérique sur un tableau							
Nation	Gold Medal	Silver Medal	Bronze Medal	Question : How many medals did Canada get in the			
Canada	3	1	2	tournament?			
Mexico	2	3	4	Rénonse : $3 + 1 + 2 = 6$			
Columbia	1	3	1				

1. Comprendre les scénarios complexes décrits dans les données, (contexte du nombre de médailles)

- 2. Trouver l'enchaînement des opérations nécessaires, (additions)
- 3. Identifier les variables mathématiques, (gold medal = 3, silver medal = 1, bronze medal = 2)
- 4. Effectuer les calculs (gold medal + silver medal + bronze medal)

 13 Fengbin Zhu et al. (2021). "TAT-QA: A Question Answering Benchmark on a Hybrid of Tabular and Textual Content in Finance". In: ACL

13

32/34

000000000

Raisonnement automatique

Limite des modèles de langue: inaptitude au calcul !

Comment aborder le raisonnement automatique?

- ▶ Des jeux de données: *Drop*, *Lila*, *TatQA*...
- Des propositions générales:
 - Approches spécifiques
 - Chain of Thoughs, structuration des réponses
 - Capacité à coder
 - ▶ Approches mixtes internes/externes ≈ toolsformer¹³

Comment évaluer? Peut-on évaluer les étapes intermédiaires du raisonnement ou seulement le résultat final? ¹⁴

¹³ Timo Schick et al. (2023). "Toolformer: Language models can teach themselves to use tools". In: arXiv preprint arXiv:2302.04761

¹⁴ Sarah Abchiche et al. (2023). "Intégration du raisonnement numérique dans les modèles de langue: État de l'art et direction de recherche". In: CORIA. ATALA

NER, RE & Généralisation

Extensions & applications

IA Générative

000000000

Modèle de langue & limite des prompts

- ► 500 tokens avec BERT
- ▶ 16k avec LongFormer¹⁵
- 2000 avec chatGPT
- 32k avec GPT4
- ► >50k avec LongT5

- ► Hierarchiser l'attention ⇒ factoriser les calculs
- ▶ Mélanger attention locale (rapide) et attention globale clusterisée (+chère)
- \Rightarrow Vers des systèmes >300k tokens pour gérer des livres

¹⁵ Iz Beltagy, Matthew E. Peters, and Arman Cohan (2020). "Longformer: The Long-Document Transformer". In: <u>arXiv</u>

¹⁶ Mandy Guo et al. (2022). "LongT5: Efficient Text-To-Text Transformer for Long Sequences". In: <u>NAACL</u>

Introduction	NER, RE & Généralisation	Extensions & applications	IA Générative	0000000
Conclusio	'n			

- Beaucoup de questions ouvertes autour des LLM
- ► Knowledge bases ≠ Extraction d'information...
- \Rightarrow beaucoup de questions sur l'extraction d'information
- Mutation des outils, des formulations, des performances, du mode d'interaction
- Limites sur les modèles de langue
 - Exploiter des sorties au format textuel¹⁷
 - ► Taille des entrées¹⁸
 - Risque d'hallucination¹⁹
 - ► Taille des modèles de langue: quelle tendance pour le futur?

¹⁷Herserant et al. 2024. En soumission

¹⁸ Florian Le Bronnec et al. (2024). "LOCOST: Long Contexts with State Space Encoders for Conditional Text Generation". In: <u>En soumission</u>

¹⁹ Pierre Erbacher et al. (2024). "Navigating Uncertainty: Optimizing API dependency for Hallucination Reduction in Closed-Book QA". In: En soumission