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Abstract

Two important tasks at the intersection of
knowledge graphs and natural language pro-
cessing are graph-to-text (G2T) and text-to-
graph (T2G) conversion. Due to the difficulty
and high cost of data collection, the supervised
data available in the two fields are usually on
the magnitude of tens of thousands, for ex-
ample, 18K in the WebNLG 2017 dataset af-
ter preprocessing, which is far fewer than the
millions of data for other tasks such as ma-
chine translation. Consequently, deep learning
models for G2T and T2G suffer largely from
scarce training data. We present CycleGT, an
unsupervised training method that can boot-
strap from fully non-parallel graph and text
data, and iteratively back translate between the
two forms. Experiments on WebNLG datasets
show that our unsupervised model trained on
the same number of data achieves performance
on par with several fully supervised models.
Further experiments on the non-parallel Gen-
Wiki dataset verify that our method performs
the best among unsupervised baselines. This
validates our framework as an effective ap-
proach to overcome the data scarcity problem
in the fields of G2T and T2G.1

1 Introduction

Knowledge graphs are a popular form of knowl-
edge representation and central to many critical nat-
ural language processing (NLP) applications. One
of the most important tasks, graph-to-text (G2T),
aims to produce descriptive text that verbalizes the
graphical data. For example, the knowledge graph
triplet “(Allen Forest, genre, hip hop), (Allen For-
est, birth year, 1981)” can be verbalized as “Allen
Forest, a hip hop musician, was born in 1981.”

⇤Equal contribution.
† Work done during internship at Amazon Shanghai AI

Lab.
1Our code is available at https://github.com/

QipengGuo/CycleGT.
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Figure 1: Given a text corpus, and a graph dataset, and
no parallel (text, graph) pairs, our model CycleGT aims
to jointly learn T2G and G2T in a cycle framework.

This has wide real-world applications, for instance,
when a digital assistant needs to translate some
structured information (e.g., the properties of the
restaurant) to the human user. Another important
task, text-to-graph (T2G), is to extract structures
in the form of knowledge graphs from the text, so
that all entities become nodes, and the relationships
among entities form edges. This can serve many
downstream tasks, such as information retrieval
and reasoning. The two tasks can be seen as a dual
problem, as shown in Figure 1.

However, most previous work has treated G2T
and T2G as two separate supervised learning prob-
lems, for which the data annotation is very expen-
sive. Therefore, both fields face the challenge of
scarce parallel data. All current datasets are of a
much smaller size than what is required to train
the model to human-level performance. For exam-
ple, the benchmark dataset WebNLG 2017 only
has 18K text-graph pairs for training (after pre-
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1 Qipeng Guo et al. (2020). “CycleGT: Unsupervised Graph-to-Text and Text-to-Graph Generation via Cycle
Training”. In: CoRR
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This has wide real-world applications, for instance,
when a digital assistant needs to translate some
structured information (e.g., the properties of the
restaurant) to the human user. Another important
task, text-to-graph (T2G), is to extract structures
in the form of knowledge graphs from the text, so
that all entities become nodes, and the relationships
among entities form edges. This can serve many
downstream tasks, such as information retrieval
and reasoning. The two tasks can be seen as a dual
problem, as shown in Figure 1.

However, most previous work has treated G2T
and T2G as two separate supervised learning prob-
lems, for which the data annotation is very expen-
sive. Therefore, both fields face the challenge of
scarce parallel data. All current datasets are of a
much smaller size than what is required to train
the model to human-level performance. For exam-
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Two important tasks at the intersection of
knowledge graphs and natural language pro-
cessing are graph-to-text (G2T) and text-to-
graph (T2G) conversion. Due to the difficulty
and high cost of data collection, the supervised
data available in the two fields are usually on
the magnitude of tens of thousands, for ex-
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unsupervised training method that can boot-
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data, and iteratively back translate between the
two forms. Experiments on WebNLG datasets
show that our unsupervised model trained on
the same number of data achieves performance
on par with several fully supervised models.
Further experiments on the non-parallel Gen-
Wiki dataset verify that our method performs
the best among unsupervised baselines. This
validates our framework as an effective ap-
proach to overcome the data scarcity problem
in the fields of G2T and T2G.1

1 Introduction

Knowledge graphs are a popular form of knowl-
edge representation and central to many critical nat-
ural language processing (NLP) applications. One
of the most important tasks, graph-to-text (G2T),
aims to produce descriptive text that verbalizes the
graphical data. For example, the knowledge graph
triplet “(Allen Forest, genre, hip hop), (Allen For-
est, birth year, 1981)” can be verbalized as “Allen
Forest, a hip hop musician, was born in 1981.”

⇤Equal contribution.
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1Our code is available at https://github.com/
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Figure 1: Given a text corpus, and a graph dataset, and
no parallel (text, graph) pairs, our model CycleGT aims
to jointly learn T2G and G2T in a cycle framework.

This has wide real-world applications, for instance,
when a digital assistant needs to translate some
structured information (e.g., the properties of the
restaurant) to the human user. Another important
task, text-to-graph (T2G), is to extract structures
in the form of knowledge graphs from the text, so
that all entities become nodes, and the relationships
among entities form edges. This can serve many
downstream tasks, such as information retrieval
and reasoning. The two tasks can be seen as a dual
problem, as shown in Figure 1.

However, most previous work has treated G2T
and T2G as two separate supervised learning prob-
lems, for which the data annotation is very expen-
sive. Therefore, both fields face the challenge of
scarce parallel data. All current datasets are of a
much smaller size than what is required to train
the model to human-level performance. For exam-
ple, the benchmark dataset WebNLG 2017 only
has 18K text-graph pairs for training (after pre-
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logique, ontologies, systèmes
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3 Xiaojing Wu, Xingsi Xue, and Wenyu Hu (2021). “Argumentation Based Ontology Alignment Extraction”.
In: Advanced Machine Learning Technologies and Applications. isbn: 978-3-030-69717-4
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Yuxiang Wu1,2 Alexander H. Miller1 Sebastian Riedel1,2

1Facebook AI Research
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Abstract

Recent progress in pretraining language mod-
els on large textual corpora led to a surge
of improvements for downstream NLP tasks.
Whilst learning linguistic knowledge, these
models may also be storing relational knowl-
edge present in the training data, and may
be able to answer queries structured as “fill-
in-the-blank” cloze statements. Language
models have many advantages over structured
knowledge bases: they require no schema en-
gineering, allow practitioners to query about
an open class of relations, are easy to extend to
more data, and require no human supervision
to train. We present an in-depth analysis of the
relational knowledge already present (without
fine-tuning) in a wide range of state-of-the-
art pretrained language models. We find that
(i) without fine-tuning, BERT contains rela-
tional knowledge competitive with traditional
NLP methods that have some access to ora-
cle knowledge, (ii) BERT also does remark-
ably well on open-domain question answer-
ing against a supervised baseline, and (iii) cer-
tain types of factual knowledge are learned
much more readily than others by standard lan-
guage model pretraining approaches. The sur-
prisingly strong ability of these models to re-
call factual knowledge without any fine-tuning
demonstrates their potential as unsupervised
open-domain QA systems. The code to re-
produce our analysis is available at https:
//github.com/facebookresearch/LAMA.

1 Introduction

Recently, pretrained high-capacity language mod-
els such as ELMo (Peters et al., 2018a) and BERT
(Devlin et al., 2018a) have become increasingly
important in NLP. They are optimised to either
predict the next word in a sequence or some
masked word anywhere in a given sequence (e.g.
“Dante was born in [Mask] in the year 1265.”).
The parameters of these models appear to store

Memory Query Answer

Symbolic
Memory Access

Neural LM
Memory Access

(Dante, born-in, X)

“Dante was born in [Mask].”

Dante

Florence

born-in

Florence

Florence

KG

LM

e.g. ELMo/BERT

Figure 1: Querying knowledge bases (KB) and lan-
guage models (LM) for factual knowledge.

vast amounts of linguistic knowledge (Peters et al.,
2018b; Goldberg, 2019; Tenney et al., 2019) use-
ful for downstream tasks. This knowledge is
usually accessed either by conditioning on latent
context representations produced by the original
model or by using the original model weights to
initialize a task-specific model which is then fur-
ther fine-tuned. This type of knowledge transfer
is crucial for current state-of-the-art results on a
wide range of tasks.

In contrast, knowledge bases are e↵ective so-
lutions for accessing annotated gold-standard re-
lational data by enabling queries such as (Dante,
born-in, X). However, in practice we often need
to extract relational data from text or other modal-
ities to populate these knowledge bases. This
requires complex NLP pipelines involving entity
extraction, coreference resolution, entity linking
and relation extraction (Surdeanu and Ji, 2014)—
components that often need supervised data and
fixed schemas. Moreover, errors can easily prop-
agate and accumulate throughout the pipeline. In-
stead, we could attempt to query neural language
models for relational data by asking them to fill in
masked tokens in sequences like “Dante was born
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▶ Fiabilité?

3 Fabio Petroni et al. (2019). “Language Models as Knowledge Bases?” In: EMNLP. Association for
Computational Linguistics
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Introduction NER, RE & Généralisation Extensions & applications IA Générative

Challenges autour de l’extraction d’information

Founder

PER ORG LOC

Physical Location

Steve Jobs founded Apple in San Francisco .
▶ Segmenter les entités

▶ Identifier et/ou typer les entités

▶ Identifier + classer les liens
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Bilan préliminaire

Base de connaissances Extraction d’information

+ Efficace / passage à l’échelle

+ Garanties sur les résultats

− Cout de construction /
maintenance

− Manque de robustesse aux erreurs

− Cout d’exploitation (LLM)

− Manque de garanties/fiabilité

+ Cout de construction/MAJ

+ Robustesse aux erreurs

Des outils aux caractéristiques complémentaires

5/34
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Relation Extraction
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Extraction des entités nommées

IOBES :  O = Other (not in an entity)
B = Beginning I = Inside E = End S = Single

Steve Jobs founded Apple in San Francisco .

B-PER E-PER O S-ORG O B-LOC E-LOC O

4

Approches historiques:

▶ Extraction de caractéristiques (majuscules, terminaisons, lexiques, ...)
▶ Modélisation des probabilités dans la séquence

▶ Chaines de Markov Cachées –HMM–
▶ Champs Aléatoires Conditionnels –CRF–

4 Bruno Taillé (2022). “Contextualization and Generalization in Entity and Relation Extraction”.
PhD thesis. Sorbonne Université

6/34
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Révolutions successives: représentation des mots & contextualisation

§ Pretrained word embeddings
(Huang 2015) SENNA

§ Character-levelword embeddings
(Lample 2016) SENNA + char-BiLSTM

§ Contextualized embeddings
(Peters 2018) ELMo
(Akbik 2018) Flair
(Devlin 2019) BERT

4 Bruno Taillé (2022). “Contextualization and Generalization in Entity and Relation Extraction”.
PhD thesis. Sorbonne Université

6/34
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Extraction des entités nommées

(Peters 2018) Deep contextualized word representations, NAACL-HLT 2018
(Akbik 2018)  ContextualString Embeddings for Sequence Labeling, COLING 2018
(Devlin 2019) BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding,  NAACL-HLT 2019

CoNLL03 Test Set (F1)

92.8(Devlin 2019)BERTLARGE

92.2(Peters 2018)ELMo

92.0*(Akbik 2018)Flair

91.9(Peters 2017)TagLM (SENNA + LM)

90.9(Lample 2016)SENNA + char BiLSTM

88.8(Huang 2015)SENNA

ELMo (Peters 2018)
§ char-CNN word representation (ELMo[0])
§ BiLSTM LM at a word level
§ Weighted sum fusion (learned weights)

Flair (Akbik 2018)
§ BiLSTM LM at a character level
§ Word represented with the concatenation of its ends

BERT (Devlin 2019)
§ Transformer LM at a subword level (WordPiece)
§ Masked LM and Next Sentence Prediction
§ BERTLARGE  feature-based = frozen LM

6/34
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Superposition lexicale: apprentissage vs test

Proportion of mentions in test set are seen during training.

3 types of mentions :

Exact match Mention seen with the same type

Partial match At least one non stop-word seen in a 
mention of same type

New All non stop-words are new

Train : Georges Washington (PER)
Barack Obama (PER)

Test :  Donald Trump (PER)
Barack Obama (PER)
Georges Bush (PER)
Washington DC. (LOC)
Obama (PER)

(Augenstein 2017)  Generalisation in named entity recognition: A quantitative analysis, CSL 2017
(Moosavi2017)       Lexical Features in Coreference Resolution: To be Used With Caution, ACL 2017

7/34
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Superposition lexicale: apprentissage vs test

CoNLL 2003
§ News articles
§ 4 languages (English, German, Dutch, Spanish)
§ 4 types (PER, ORG, LOC, MISC)

OntoNotes 5.0
§ 6 genres (news, conversations, web…)
§ 3 languages (English, Arab, Chinese)
§ 18 types (11 entities + 7 values)

WNUT 17 (Workshop on Noisy User-generated Text)
§ Web Text (Twitter, Reddit, Youtube, Stack Overflow )
§ English
§ 6 types (PER, LOC, Corporation, Group, Creative Work, Product)

7/34
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Superposition lexicale: apprentissage vs test

7%

42%

69%

52%
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Séparation des performances: les modèles

Transformer = contextualisation globale (vs LSTM = locale)
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Séparation des performances: les résultats

0
10
20
30
40
50
60
70
80
90
100

EM PM New All
0
10
20
30
40
50
60
70
80
90
100

EM PM New All

CLM +18.4 %

CNER +5.0 %
CNER + CLM + 14.5 %

OntoNotes* WNUT*

CLM +9.6 %

CNER +7.3 %
CNER + CLM + 11.2 %

9/34
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Transformer & NER

(Vaswani 2017) Attention is all you need, NeurIPS 2017 10/34
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Extraction de relation: pipeline & piecewise pooling
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Superposition des ensembles d’apprentissage & test

NER Seen Exact Match with the same type   
(Augenstein 2017, Taillé 2020) Unseen

RE Exact Match Triple (head, predicate, tail) exactly seen during training
Partial Match (head, predicate, …) or (…, predicate, tail) seen during training
New Otherwise
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Relation Extraction vs End-to-end Relation Extraction
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Superposition des ensembles d’apprentissage & test
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Problème supplémentaire: la définition des métriques

Strict

Steve Jobs founded Apple in

Founder

(Bekoulis 2018a) Joint  Entity  Recognition and Relation Extraction as a Multi-head Selection Problem, Expert Systems with Applications 2018

Steve Jobs founded Apple in

Founder

Steve Jobs founded Apple in

Founder

ü

û

û

ü ü

ü û

üû

Boundaries Relaxed

Steve Jobs

Steve Jobs

Steve Jobs

Strict

ü

û

û

ü ü

û û

üû

Boundaries Relaxed

NER RE

PER

ORG

PER

PER

ORG

PER

13/34



Introduction NER, RE & Généralisation Extensions & applications IA Générative

Dépasser les approches pipelines... Un challenge!

Label embeddings

Entity Filtering Multi-Head 
Selection
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Conclusions intermédiaires

▶ Les performances en extraction d’information sont sur-évaluées
▶ Mémorisation vs Généralisation
▶ Nouveaux benchmark: WNUT, Cross-NER

▶ Le problème de transfert est critique:
▶ En cout d’étiquetage ET en perte de performances

▶ Modifier un modèle de langue en profondeur = mauvaise idée
▶ RLHF
▶ Modification légère: Prefix tuning, adapter, LoRA, pipeline

4

4 Zihan Liu et al. (2020). “CrossNER: Evaluating Cross-Domain Named Entity Recognition”. In: arXiv
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Auto-supervision (ex-distillation)

Processus NER standard

1 Liste d’entités

2 Etiquetage automatique du corpus
regex

3 Inférence sur le test

4 Ré-apprentissage
Teacher-student

ID Sentence
1 ͞/ƚ appears that August is showing an economy

again reversing ĐŽƵƌƐĞ͕͞ �ƐĂŝĚ�ĞĐŽŶŽŵŝƐƚ Lynn
Reaser of Barnett Banks Inc. in Jacksonville.

2 Adilson Varela, commonly known as Cabral, is a
footballer from Switzerland who plays as
midfielder for FC Basel.

͙ ͙

Unlabeled 
Training Data

Knowledge Bases Multi-source
Gazetteers

Lynn Reaser
Adilson Valera

Jacksonville

PER
PER
LOC

Barnett Banks Inc
Cabral

FC Basel

ORG
PER
ORG

Generate Distantly Labeled Data Training Instances

Adilson Varela, commonly 
ŬŶŽǁŶ�ĂƐ��ĂďƌĂů͕�͙

BERT

Classification Head
Distant 
Labels

Stage I: BERT-Assisted Distantly Supervised Learning with Early Stopping

Training Instances

Adilson Varela, commonly 
ŬŶŽǁŶ�ĂƐ��ĂďƌĂů͕�͙

BERT

Classification Head

BERT

Classification Head

Iteratively Update

initialization Student Model Teacher Model

Pseudo
Label

B-PER  I-PER    O        O O B-PER ͙�

Stage II: Self-training

Pseudo
Labels

Figure 1: The two-stage BOND framework. In Stage I, the pre-trained BERT is adapted to the distantly supervised NER task
with early stopping. In Stage II, a student model and a teacher model are �rst initialized from the model learned in Stage
I. Then the student model is trained using pseudo-labels generated by the teacher model. Meanwhile, the teacher model is
iteratively updated by the early-stopped student.

Figure 2: Illustration of matching entities from Wikidata

BERT

MLM Classification Head

͙��ĞĐŽŶŽŵŝƐƚ���<MASK> <MASK> ŽĨ��������ĂƌŶĞƚƚ��͙

Lynn      Reaser

BERT

NER Classification Head

͙��ĞĐŽŶŽŵŝƐƚ����Lynn      Reaser ŽĨ��������ĂƌŶĞƚƚ��͙

͙���������K������<B-PER>  <I-PER> O      <B-ORG>  ͙

TransferPre-trained Model NER Model

Figure 3: Pre-trained Mask Language Model vs. NER Model

of the pre-trained BERT if without any intervention. Early stop-
ping essentially serves as a strong regularization to prevent such
over�tting and improves generalization ability to unseen data.
Remark 1. Stage I addresses both of the two major challenges in
distantly supervised NER tasks: noisy annotation and incomplete
annotation. As the semantic knowledge in the pre-trained BERT is
transferred to the NER model, the noise is suppressed such that the
prediction precision is improved. Moreover, early stopping prevents
the model from over�tting the incomplete annotated labels and
further improves the recall.

Embedding 
Space

Positive

Negative

True

False

Distant
True

Distant
False

Model

Ideal

Model OutputSample Point

Model Output

Embedding 
Space

Positive

Negative

Embedding 
Space

Positive

Negative

Pre-trained
BERT
Embedding

Early Stopping

Overfitting

Figure 4: Illustration of Stage I. Top) The pre-trained se-
mantic knowledge is transferred to the NER task; Middle)
Early stopping leverages the pre-trained knowledge and
yields better prediction; Bottom) Without early stopping,
the model over�ts the noise. The token embeddings are
evolving, as we update the pre-trained BERT layers.

3.2 Stage II: Self-Training
We �rst describe a teacher-student framework of self-training to im-
prove the model �tting, and then we propose to use high-con�dence
soft labels to further improve the self-training.

3.2.1 The Teacher-student Framework. We use 5 (·;\tea) and 5 (·;\stu)
to denote teacher and student models, respectively. Given the model
learned in Stage I, 5 (·; b\ ), one option is to initialize the teacher
model and the student model as:

\
(0)
tea = \

(0)
stu = b\ ,

Research Track Paper KDD '20, August 23–27, 2020, Virtual Event, USA

1057

5

5 Chen Liang et al. (2020). “Bond: Bert-assisted open-domain named entity recognition with distant
supervision”. In: ACM SIGKDD 16/34
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Application à l’analyse des descriptions de flores

Extraction d’Information ⇒ Clé-valeur

Structured knowledge extraction from species
descriptions
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Abstract—The morphological features of species are crucially
important, and their descriptions contain significant information
about them. However, extracting structured knowledge from
these descriptions can be a time-consuming process. In this
regard, we introduce a text-to-graph model that is specifically
designed for species descriptions and employs weakly supervised
Named Entity Recognition (NER). Our approach involves the ex-
traction of named entities, which are then utilized to reconstruct
triplets using dependency rules, resulting in a graph representa-
tion. This method allows for comparing different species based on
their morphological characteristics and enables linking various
data sources. The results of our study focus on our NER model
and demonstrate that it outperforms baseline models and offers
a valuable tool for the ecology and biodiversity community.

Index Terms—Named entity recognition, Distant supervision,
Knowledge-graphs.

I. INTRODUCTION

Species descriptions are a crucial source of information for
biodiversity studies and species identification. They provide
detailed information on the morpho-anatomical characteristics
of a given species, which are essential to distinguish one
species from another. These descriptions are usually written
in text form in scientific journals, books or databases.
To facilitate the study and comparison of different species,
species descriptions are often represented as knowledge
graphs that are used to identify relationships between
different species and model species evolution.
However, extracting this information from species descriptions
can be a time-consuming and laborious task, usually performed
by experts [1]. Automating this process is therefore a challenge
for researchers in this community.
Deep learning models have shown remarkable performance
in knowledge extraction tasks [2]. However, these models are
heavy and require a large amount of annotated data in the
target domain to achieve high accuracy, which is very costly.
We thus focus on Named Entity Recognition (NER)
approaches under the assumption that the particular domain

of the targeted documents will allow us to create the specific
labels for the subjects –textitorgans– and the predicates
–textittypes of descriptors–. The fact that the attributes are
identified with their nature allows the reconstruction of the
triplet as in the example:

�25*$1!�)ORZHUV���25*$1!���PHURXV��&DO\[�DHVWLYDWLRQ
YDOYDWH��FDPSDQXODWH�������PP�ORQJ�¬DED[LDOO\¬�

�'(6&�685)$&(!�JODEURXV���'(6&�685)$&(! )ORZHUV *ODEURXV
VXUIDFH

Most annotated corpora and pre-trained models in NER are
designed for general data (e.g. wikipedia). Moreover, transfer
between domains is difficult. With the exception of financial
or biomedical documents [3], few specific domains are
affordable by exploiting only available academic resources.
Therefore, this paper’s challenge is to propose a global
methodology for information extraction in the domain of
species description.

Our approach is based on 3 steps: (1) Segment the text by
organ description using rules; (2) Identify organs and descrip-
tors by named entity extraction; (3) Reconstruct triplets using
rules. This article mainly describes the process of step (2)
which is itself decomposed into different steps: (a) Retrieving
a glossary (keywords and classes) from domain experts; (b)
Exploiting the terms of the glossary to annotate the corpus
distantly; (c) Training a first NER model; (d) Improving the
model (teacher-student self-training). The application contribu-
tion of this paper is to study a specific use case of named entity
extraction in distant supervision with state-of-the-art tools.

II. RELATED WORK

Knowledge representation is an important issue for the
study of species in biology. Current systems rely mainly on
experts [?], which is very interesting for targeted studies but
does not allow large processing of the available literature.
The challenge is to find the right tools in the literature to
address this challenge. Deep learning models have shown
remarkable performance in knowledge extraction tasks but

Fig. 1. The proposed architecture for distantly supervised Named Entity Recognition: Distant annotation based on manual annotation of an existing glossary
is used to create the training set for self-training while the unlabeled species descriptions are used to pre-train the language model.

Fig. 2. Sample of the corpus Flora Neotropica containing the description of
the species Disterigma agathosmoides

Y1 ={Color, Disposition, Form,

Position, Surface-texture} (3)

Note : In the following, the y will in fact denote vectors
of scores on the C classes (y 2 RC). In the initial version, y
takes the form of a one-hot on the targeted class. In the rest
of the article, for simplicity, we will speak of class y whereas

formally, the class would be rather argmax(y). This subtlety is
important to be able to introduce the self-training mechanisms
in the following.

Distant annotation process. After applying the above-
mentioned schemes, we consider the corpus as a set of
sentences S = {s0, s1, ..., sM}, each sentence sm =
{w0, w1, ..., wNm} being a set of words wn.

The w words from the S corpus and the G glossary are
lemmatized and then compared: each match annotates a wn

word with the y label from the glossary. Unrecognized words
are assigned to the O class.

We thus obtain a set of sequences of labels L =
{`1, . . . , `M}, `m = {y1, . . . , yNm

} aligned with the corpus
of sentences S. The statistics of the glossary and its projection
on the corpus are given in the table I.

B. Proposed Named Entity Recognition method

The extraction of named entities is a difficult task, so
the development of such an approach from data with distant
annotations is a scientific challenge. The very question of
evaluation in such a framework is non-trivial, we will come
back to it later in this study.

To solve this problem, we adopted self-training, a technique
that iteratively integrates the most reliable predictions of the
model into the ground truth to progressively improve the
model coverage.

TABLE I
STATISTICS ON THE DATASET : CLASSES, NUMBER OR DISTINCT WORDS

IN EACH CLASS AND NUMBER OF OCCURRENCES IN THE CORPUS.

Set Class Occurrences Number of words

Y0

Flower 22890 23
Fruit 4968 10
Habit 1920 3
Leaf 4364 5
Part-of 23849 25
Stem-root 3296 7

Y1

Color 18342 15
Disposition 8405 21
Form 24816 64
Position 10936 13
Surface-texture 18325 23

Fig. 3. Triplet extraction process from an organ-centered sentence

The second challenge we faced was the specificity of the
vocabulary and sentence structures associated with such a
sharp domain. As shown in Figure 2, the distribution of
vocabulary and the organization of word sequences differ too
much from usual natural language to benefit from the input
of pre-trained language models. We investigated two strategies
to overcome this problem : (1) using a pre-trained language
model, relying on its robustness, and (2) refining the pre-
trained language model by re-predicting hidden words on
documents from the flora.

After tokenization, the subwords of each word are assigned
to a specific class. In the inference process, the model com-
putes a confidence score for each class assignment. To obtain
the final class of each word, we choose the class with the
highest confidence score among all of its subwords. This is
because a word can be split into multiple subwords, each of
which may be assigned a different class, but ultimately we
want to assign a single class to the entire word. By selecting
the most confident class of each subword and assigning it to
the entire word, we can ensure that our NER model produces
accurate and consistent results.

Architecture. The named entity recognition model is
based on a pre-trained BERT encoder with a fully connected
layer for keyword classification. We denote this model by f✓,
where ✓ represents the set of parameters (language model and
classification layer). For each sequence sm, f✓(sm) 2 RC⇥Nm

is an estimate of p(Yj = c|sm) for all words wj in s and for the
C classes considered. We will denote f✓,j,c(wj) the prediction
associated with word j and class c. The training of the model
is performed on pairs of aligned sequences (sm, `m). The loss
function is classically a cross-entropy :

L = �
X

(s,`)2S,L

X

(wj ,yj)2(s,`)

CX

c=0

yj,c log
exp(f✓,j,c(s))PC

c0=1 exp(f✓,j,c0(s))

(4)
Reminder: As mentioned in Section III, the variable y

represents the score vectors for the different classes. Therefore,
yj,c denotes the score of the word j for the class c. In this
initial phase, yj,c is set to 1 for the class corresponding to the
annotation of wj and 0 for all other classes.

Re-training of all layers of the model. During the learning
process, we update all layers of the end-to-end model: the
encoder layers are not fixed. This approach improves the
quality of the results and the learning efficiency by modifying
the last layers of the encoder to adapt them to the classification
task.

Pre-training the language model. Pre-training the BERT
encoder on the unsupervised hidden word prediction task can
significantly improve the quality of the learned representations
when the textual domain is very particular, as is the case in
our application.

Therefore, we set up a procedure by training a word
classifier g✓0 on a large and diversified corpus of biological
texts, particularly on species description data (same corpus
used for the NER). After a few iterations, the parameters of
the classification layer are removed and the parameters of the
language model ✓0 are transferred to the initialization of the
NER model which becomes f✓0 . This procedure allows the
NER model to benefit from pre-training.

C. Self-training

The self-training procedure is an iterative approach. We use
the strategy described in [19].

Initializing the teacher. Let us first define a reference
NER model fT

✓ trained on our dataset: this model is called
teacher (T). At iteration 1, f

(T )
✓ generates a list of predictions

Ŷ = Softmax(f
(T )
✓ (S))) associated with the sentences of the

corpus. Predictions whose confidence score exceeds a fixed
threshold � are used to correct the Y labels. We denote this
new labeling Y (1).

8j, y
(1)
j =

8
<
:

yj if argmax(ŷj) = argmax(yj)
ŷj if max(ŷj) > � et argmax(yj) = 0
yj else

(5)
Initialisation of the student. The model student f

(S)
✓0 is

learned on this set of corrected data. By taking the equa-
tion (4), the interest of the procedure is clearer: considering
the distribution of the scores on yj allows to avoid too abrupt
changes in the labeling and to stabilize the evolution of the
models. This is one of the variants studied in [19], it proved
to be the most efficient on our data.

Iterations of the student. The model f
(S)
✓0 successively

predicts new labels Y (t), according to the procedure described
in equation (5), and then updates its weights Y (t).

6
6 Maya Sahraoui et al. (2022). “NEARSIDE: Structured kNowledge Extraction frAmework from SpecIes

DEscriptions”. In: Biodiversity Information Science and Standards
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TABLE II
NUMBER OF OCCURRENCES OF THE CLASSES ON THE TEST SET X , Xc (OUT OF DISTRIBUTION) AND ON THE TRAINING SET

Set Class X Xc Train set

Y1

Flower 1143 272 4076
Fruit 435 0 1456
Habit 184 0 767
Leaf 887 0 2713
Part-of 1414 252 4790
Stem-root 363 0 1362

Y2

Color 1760 5174 6536
Disposition 449 136 1544
Form 1976 90 6792
Position 664 0 2344
Surface-texture 1174 57 4201

TABLE III
ABILITY OF THE MODEL TO DETECT AND CLASSIFY ENTITIES SEEN IN THE TRAINING PHASE IN A NEW CONTEXT ( DETECTION/CLASSIFICATION

SCORES)

Models Precision Recall Score F1

Baseline 100/93.83 75.74/70.82 86.19/79.26

Baseline w/ lm 100/95.15 85.28/80.82 92.05/86.54

Baseline w/self-train 100/94.42 84.29/80.15 91.47/86.22

in classification. These results indicate that pre-training the
language model in an unsupervised manner on the same
monographs that were used for named entity recognition is
a promising method for improving the performance of the
NER model on closed-domain data, as is the case for species
descriptions.

Our experiments on the effect of self-training also yielded
encouraging results. Our self-trained model achieved an F1
score of 86.22%, outperforming the F1 score of the reference
model by 6.96%. These results highlight the effectiveness
of self-training in overcoming the negative impact of distant
annotation (noise and silence on labels). We can conclude that
self-training is a useful technique to improve the performance
of NER models in scenarios where labeled data is sparse or
of poor quality.

Experiences were also conducted on the effect of self-
training and pre-training of the language model, however,
these two methods combined do not seem to bring any
significant gain on detection and classification performances.
One possible explanation is that the combination of the two
algorithms leads to an over-fitting of the data, nevertheless,
more specific experiences must be conducted in order to have
a precise conclusion on this matter.

We note a significant gap between detection and
classification in all the experiments. We attribute this
discrepancy to the lack of labeled data but we are convinced
that it could be solved by using for example data augmentation.
This is an interesting perspective for this work.

In particular, the confusion matrix in Figure 4 shows mis-

Fig. 4. Confusion matrix of the model with self-training on the test set X

classifications for the class Disposition, which has the most
false negatives. This class is often confused with the O class,
which is the most represented class in the training dataset,
as well as the Form class, which is the most represented
among the feature classes. However, it is important to note
that the confusions between descriptor classes and feature
classes are very low, indicating that the model has successfully
assimilated these notions. This last point is crucial for the
quality of the extracted triples later on.

TABLE IV
MODEL’S ABILITY TO DETECT AND CLASSIFY NEW ENTITIES, OUT OF THE TRAIN SET’S DISTRIBUTION. (DETECTION/CLASSIFICATION SCORES)

Models Precision Recall Score F1

Baseline 100/92.33 64.78/54.52 78.62/62.76

Baseline w/ lm 100/89.88 69.21/57.73 81.80/65.17

Baseline w/self-train 100/90.76 68.95/57.82 81.62/64.90

Fig. 5. Probability distribution of the reference model and the model with self-training for the detection of a named-entity that belongs to the class Part-of.
Dataset Xc

Fig. 6. Baseline model Fig. 7. Model with self-training

Fig. 8. Sample of Flora Neotropica containing the description of the species Burmannia Tenella and the graph extracted by our model for this species, with
a focus on one sample sentence
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Figure 1: The architecture of ITA. ITA aligns an image into object tags, image captions and texts from OCR.
ITA takes them as visual contexts and then feeds them together with the input texts into the transformer-based
embeddings. In the cross-view alignment module, ITA minimizes the distance between the output distribution of
cross-modal inputs and textual inputs.

input views during training. The architecture of our
framework is shown in Figure 1.

2.1 NER Model Architecture
We use a neural model with a linear-chain CRF
layer, a widely used approach for the sequence la-
beling problem (Huang et al., 2015; Akbik et al.,
2018; Devlin et al., 2019). The input is fed
into a transformer-based pretrained textual embed-
dings model and the output token representations
{r1, · · · , rn} are fed into the CRF layer:

p✓(y|w) =

nQ
i=1

 (yi�1, yi, ri)

P
y02Y(w)

nQ
i=1

 (y0i�1, y
0
i, ri)

where ✓ is the model parameters, Y(w) is the set
of all possible label sequences given the input w.
Given the gold label sequence ŷ in the training
data, the objective function of the model for the T
input view is:

LT(✓) = � log p✓(ŷ|w) (1)

The loss can be calculated using Forward algo-
rithm.

2.2 Image-text Alignments
The transformer-based pretrained textual embed-
dings have strong representations over texts. There-
fore, ITA converts the image information into tex-
tual space through generating texts from the im-
age so that the learning of the self-attention in the

transformer-based model can be significantly eased
compared with simply using image features from
an object detector. We propose a local (LA), a
global (GA) and an optical character alignment
(OCA) approaches for alignments.

Object Tags as Local Alignment Given an im-
age, the image information can be decomposed into
a set of objects in local regions. The object tags of
each region textually describe the local information
in the image. To extract the objects, we use an ob-
ject detector OD to identify and locate the objects
in the image:

a, o = OD(I); where

a = {a1, a2, · · · , al} and o = {o1, o2, · · · , ol}

The attribute predictions from the object detector
contain multiple attribute tags ai for each object
oi. We linearize and sort the objects in a descend-
ing order based on the confidences of the detection
model. For each object, we heuristically keep 0 to
3 attributes with confidence scores above a thresh-
old m. We linearize the attributes and put the at-
tributes before the corresponding objects since the
attributes are the adjectives describing the object
tags. As a result, we take the predicted l object tags
o and their attribute tags a from the object detector
as the locally aligned visual contexts wLA:

wLA = {a1, o1, a2, o2, · · · , al, ol}

Image Captions as Global Alignment Though
the local alignment can localize the image into

3178

6

6 Xinyu Wang et al. (2022). “ITA: Image-Text Alignments for Multi-Modal Named Entity Recognition”. In:
NAACL
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Fig. 1. The proposed architecture for distantly supervised Named Entity Recognition: Distant annotation based on manual annotation of an existing glossary
is used to create the training set for self-training while the unlabeled species descriptions are used to pre-train the language model.

Fig. 2. Sample of the corpus Flora Neotropica containing the description of
the species Disterigma agathosmoides

Y1 ={Color, Disposition, Form,

Position, Surface-texture} (3)

Note : In the following, the y will in fact denote vectors
of scores on the C classes (y 2 RC). In the initial version, y
takes the form of a one-hot on the targeted class. In the rest
of the article, for simplicity, we will speak of class y whereas

formally, the class would be rather argmax(y). This subtlety is
important to be able to introduce the self-training mechanisms
in the following.

Distant annotation process. After applying the above-
mentioned schemes, we consider the corpus as a set of
sentences S = {s0, s1, ..., sM}, each sentence sm =
{w0, w1, ..., wNm} being a set of words wn.

The w words from the S corpus and the G glossary are
lemmatized and then compared: each match annotates a wn

word with the y label from the glossary. Unrecognized words
are assigned to the O class.

We thus obtain a set of sequences of labels L =
{`1, . . . , `M}, `m = {y1, . . . , yNm

} aligned with the corpus
of sentences S. The statistics of the glossary and its projection
on the corpus are given in the table I.

B. Proposed Named Entity Recognition method

The extraction of named entities is a difficult task, so
the development of such an approach from data with distant
annotations is a scientific challenge. The very question of
evaluation in such a framework is non-trivial, we will come
back to it later in this study.

To solve this problem, we adopted self-training, a technique
that iteratively integrates the most reliable predictions of the
model into the ground truth to progressively improve the
model coverage.

⇒ Construire des systèmes pédagogiques pour l’identification de taxons

18/34
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Dynamic NER

Cas extrême où les entités changent de type tout le temps!

Exemple: détecter les joueurs de NBA... Avec le résultat du match:
victoire/défaite

Context Problematic Contribution Experiments & Results Conclusion References

DNER datasets

To implement the task we created two datasets : DNER-RotoWire and DNER-IMDb

DNER-RotoWire: From NBA match summaries, the goal is to identify players
and determine if they are winning or losing

DNER-IMDb: From movie synopses, the goal is to identify actors and categorize
them according to their ranking in the credit.

Figure 5: DNER-rotoWire sample

8/16

6

6 Tristan Luiggi et al. (2023). “Dynamic Named Entity Recognition”. In: ACM SAC
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Discussion D-NER

▶ Proposition de nouvelle ressourceDynamic Named Entity Recognition SAC ’23, March 27-April 2, 2023, Tallinn, Estonia

Models Set
RotoWire IMDb

DNET DNER Entity DNET DNER Entity

BERT-Linear
Seen 0.81 0.66 0.86 0.67 0.36 0.58

Seen/Unseen 0.81 0.65 0.85 - - -
Unseen 0.80 0.63 0.81 0.45 0.31 0.56

BERT-CLS
Seen 0.81 0.67 0.88 0.69 0.37 0.60

Seen/Unseen 0.81 0.68 0.87 - - -
Unseen 0.80 0.67 0.85 0.46 0.32 0.58

BERT-CRF
Seen - 0.67 0.90 - 0.60 0.94

Seen/Unseen - 0.67 0.88 - - -
Unseen - 0.66 0.87 - 0.52 0.92

BERT-CLS-CRF
Seen - 0.61 0.82 - 0.56 0.90

Seen/Unseen - 0.61 0.81 - - -
Unseen - 0.60 0.79 - 0.48 0.88

Table 5: Experiment results. The `�1 score is reported for both datasets and tasks.

RotoWire IMDb
Model Set GT All W L GT All 1 2 3 4

Bert-Linear
S 5.44% 17.69% 14.61% 21.87% 0% 7.24% 4.47% 6.27% 11.11% 9.92%

S/U 4.64% 20.88% 17.52% 26.15% - - - - - -
U 2.63 % 20.54% 17.96% 26.31% 0.31% 8.64% 5.59% 10.05% 12.02% 9.20%

Bert-CLS
S 5.44% 13.27% 9.23% 18.75% 0% 5.01% 3.68% 3.76% 7.20% 7.14%

S/U 4.64% 18.27% 13.40% 25.92% - - - - - -
U 2.63% 10.81% 7.81% 17.54% 0.31% 5.68% 4.58% 6.41% 6.43% 6.25%

Table 6: Inconsistency analysis statistics. Entity with a single mention are ignored. S stands for the seen test set, S/U for the
seen/unseen test set and U for the unseen
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Figure 6: Baseline architectures

To measure the entity consistency (challenges in Section 3.2),
we design the inconsistency metric. It compares the labels of all
mentions of the same entity within a sample. If an entity obtains
the same label for all its mentions, the incoherence metric is equal
to 0. Otherwise, its value is 1. This metric is then aggregated over
all multi-mentioned entities4 of all samples.

7 BENCHMARK RESULTS
RotoWire - DNET. In this experiment, the goal is to classify

player contextualized representations within two categories: winner
and loser. Results are shown in Table 5 (left).

We logically observe a decrease in performance when the di�-
culty increases from Seen to Unseen. Even if the di�erence is limited,
4For clarity, all entities that are mentioned only once are removed from the calculations.

it is easier for a model to decide if some properties of the context
have already been seen during training. Our two baselines perform
similarly. We can observe in Table 6 (left) the label inconsistency
metric. The e�ect of remote supervision is visible on the ground
truth with an inconsistency that varies from 2.63% to 5.44%. This
error is ampli�ed by the model whose inconsistencies rise to 20.54%
(unseen test set) for BERT-Linear. This indicates that the consis-
tency challenge is di�cult to meet without explicit modeling of
team membership constraints. It is interesting to note that the intro-
duction of a general context (CLS) enables the model to signi�cantly
reduce inconsistencies (10.81% for the unseen test set).

RotoWire - DNER. All DNER results are shown in table 5 (right).
The �rst conclusion from this table is that the CLS token provides a
performance gain compared to the baseline Bert-Linear architecture.
This is consistent with the experiments with DNET, where the CLS
token exhibited better robustness to inconsistency. This e�ect could
be of greater magnitude due to the IOBES scheme, which requires
the classi�cation of a larger number of classes. BERT-CRF performs
better in entity recognition, which is easily explained by the CRF
layer e�ectively maintaining label coherence. This suggests that the
CRF helps in maintaining such a factor, but is not able to correctly
analyze a context. The combination of the CLS token and the CRF
layer generally performs well, but the added complexity could
trigger an over�tting e�ect. This con�rms our suspicions about the
added di�culty of our proposed task.

The best baseline (BERT-CLS) proposes an average F1 perfor-
mance of 0.67, mainly due to errors in typing and precision issues;
although interesting, it is clear that the many challenges mentioned
in Section 3.2 must be addressed in a speci�c way to cope with the
di�culty of the DNER task.

IMDb - DNET. On these data, the scores are globally worse than
on RotoWire (Table 5 (right)). This is easily explained by a change
from 2 to 4 classes. The loss of performance by going from seen

Context Problematic Contribution Experiments & Results Conclusion References

Dataset Analysis

Figure 6: Credit order statistics w.r.t.
popularity. Popular actors tend to take first
and second place in the credit while being
less expected to be in third and fourth.

Figure 7: Actor relative position distribution
according to their labels. First credited actors
tend to be cited more often earlier in the
summary.

Figure 8: Winning statistics w.r.t. popularity.
The quartile of most popular players tends to
win more frequently.

Figure 9: Player relative position distribution
according to their labels. Winning players tend
to be mentioned earlier. 10/16

▶ Analyse de l’intérêt de la couche CRF
▶ Distinction in-domain / ood

⇒ Des perspectives vers l’encodage de la position des mots
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Détection des entités dans un document structuré

Encodage de la position dans les documents:

7

7 A. Kazemnejad (2019). Transformer Architecture: The Positional Encoding. 21/34
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Détection des entités dans un document structuré

7

▶ Texte

▶ Image

▶ Coordonnées des mots

Puiser dans les modalités pour
améliorer les performances

7 Yiheng Xu et al. (2020). “Layoutlm: Pre-training of text and layout for document image understanding”.
In: ACM SIGKDD
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Détection des entités dans un document structuré

Multimodal Transformer
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Figure 3: The architecture and pre-training objectives of LayoutLMv3. LayoutLMv3 is a pre-trained multimodal Transformer
for Document AI with uni�ed text and image masking objectives. Given an input document image and its corresponding text
and layout position information, the model takes the linear projection of patches and word tokens as inputs and encodes them
into contextualized vector representations. LayoutLMv3 is pre-trained with discrete token reconstructive objectives of Masked
Language Modeling (MLM) and Masked Image Modeling (MIM). Additionally, LayoutLMv3 is pre-trained with a Word-Patch
Alignment (WPA) objective to learn cross-modal alignment by predicting whether the corresponding image patch of a text
word is masked. “Seg” denotes segment-level positions. “[CLS]”, “[MASK]”, “[SEP]” and “[SPE]” are special tokens.

sequence. Following the LayoutLM, we normalize all coordinates
by the size of images, and use embedding layers to embed x-axis,
y-axis, width and height features separately [54]. The LayoutLM
and LayoutLMv2 adopt word-level layout positions, where each
word has its positions. Instead, we adopt segment-level layout posi-
tions that words in a segment share the same 2D position since the
words usually express the same semantic meaning [28].
Image Embedding. Existing multimodal models in Document AI
either extract CNN grid features [2, 56] or rely on an object detector
like Faster R-CNN [44] to extract region features [14, 31, 40, 54]
for image embeddings, which accounts for heavy computation
bottleneck or require region supervision. Inspired by ViT [11] and
ViLT [22], we represent document images with linear projection
features of image patches before feeding them into the multimodal
Transformer. Speci�cally, we resize a document image into � ⇥,
and denote the image with I 2 R⇠⇥�⇥, , where⇠ , � and, are the
channel size, width and height of the image respectively. We then
split the image into a sequence of uniform % ⇥ % patches, linearly
project the image patches to ⇡ dimensions and �atten them into
a sequence of vectors, which length is " = �, /%2. Then we add

learnable 1D position embeddings to each patch since we have
not observed improvements from using 2D position embeddings in
our preliminary experiments. LayoutLMv3 is the �rst multimodal
model in Document AI that does not rely on CNNs to extract image
features, which is vital to Document AI models to reduce parameters
or remove complex pre-processing steps.

We insert semantic 1D relative position and spatial 2D relative
position as bias terms in self-attention networks for text and image
modalities following LayoutLMv2[56].

2.2 Pre-training Objectives
LayoutLMv3 is pre-trained with the MLM, MIM, and WPA objec-
tives to learn multimodal representation in a self-supervised learn-
ing manner. Full pre-training objectives of LayoutLMv3 is de�ned
as ! = !"!" + !"�" + !,%� .
Objective I: Masked Language Modeling (MLM). For the lan-
guage side, our MLM is inspired by the masked language mod-
eling in BERT [9] and masked visual-language modeling in Lay-
outLM [54] and LayoutLMv2 [56]. We mask 30% of text tokens with

7

⇒ A quel moment souhaite-t-on mélanger les modalités?
7 Yupan Huang et al. (2022). “LayoutLMv3: Pre-training for Document AI with Unified Text and Image

Masking”. In: ACM International Conference on Multimedia
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Optimisation robuste pour la généralisation

Optimisation de sous-espaces

8

Création de régions homogènes
dans l’espace de représentation

⇒ Améliorer l’espace de
représentation

8 Mitchell Wortsman et al. (2021). Learning Neural Network Subspaces.
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Prefix-tuning & optimisation

▶ Impossible de maintenir plusieurs
versions des paramètres d’un LLM

▶ Possible de travailler sur des
approches parcimonieuses

⇒ Amélioration dans diverses tâches
GLUE... Mais pas encore en NER9

It's raining cats and dogs

Transformer
block

Transformer
block

...

Attn

MLP

Prédiction
sur le mot

It's raining cats and dogs

Transformer
block

...

Attn

MLP

Prédiction
sur le mot

Tâche =
trouver le type

des mots

9 Louis Falissard, Vincent Guigue, and Laure Soulier (2023). “Improving generalization in large language
models by learning prefix subspaces”. In: EMNLP
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Contextualisation des phrases à analyser

Erreurs en NER = problème de contextualisation?

Comment analyser la phrase suivante?

Azawad reprend les armes

24/34
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Contextualisation des phrases à analyser

Erreurs en NER = problème de contextualisation?

En allant chercher du contexte sur internet (ou ailleurs):

Azawad reprend les armes
Le Mouvement national de l’Azawad (MNA), créé en novembre 2010

Le secrétaire général du mouvement est Ahmed Ould Sidi Mohamed
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Contextualisation des phrases à analyser

Erreurs en NER = problème de contextualisation?

Improving Named Entity Recognition by
External Context Retrieving and Cooperative Learning

Xinyu Wang⇧‡, Yong Jiang†⇤, Nguyen Bach†, Tao Wang†,
Zhongqiang Huang†, Fei Huang†, Kewei Tu⇧⇤

⇧School of Information Science and Technology, ShanghaiTech University
Shanghai Engineering Research Center of Intelligent Vision and Imaging

Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences
University of Chinese Academy of Sciences

†DAMO Academy, Alibaba Group
{wangxy1,tukw}@shanghaitech.edu.cn, yongjiang.jy@alibaba-inc.com
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Abstract
Recent advances in Named Entity Recogni-
tion (NER) show that document-level contexts
can significantly improve model performance.
In many application scenarios, however, such
contexts are not available. In this paper, we
propose to find external contexts of a sentence
by retrieving and selecting a set of semanti-
cally relevant texts through a search engine,
with the original sentence as the query. We
find empirically that the contextual represen-
tations computed on the retrieval-based input
view, constructed through the concatenation
of a sentence and its external contexts, can
achieve significantly improved performance
compared to the original input view based only
on the sentence. Furthermore, we can improve
the model performance of both input views
by Cooperative Learning, a training method
that encourages the two input views to pro-
duce similar contextual representations or out-
put label distributions. Experiments show that
our approach can achieve new state-of-the-art
performance on 8 NER data sets across 5 do-
mains.1

1 Introduction

Pretrained contextual embeddings such as ELMo
(Peters et al., 2018), Flair (Akbik et al., 2018) and
BERT (Devlin et al., 2019) have significantly im-
proved the accuracy of Named Entity Recognition
(NER) models. Recent work (Devlin et al., 2019;
Yu et al., 2020; Yamada et al., 2020) found that
including document-level contexts of the target sen-
tence in the input of contextual embeddings meth-
ods can further boost the accuracy of NER models.

⇤Yong Jiang and Kewei Tu are the corresponding authors.
‡: This work was conducted when Xinyu Wang was interning
at Alibaba DAMO Academy.

1Our newest code is publicly available at
https://github.com/modelscope/AdaSeq/
tree/master/examples/RaNER. The older version:
https://github.com/Alibaba-NLP/CLNER.

senate democrats eliminated
the nuclear option when they
had the majority a few years
ago , over republican
objections .

President Obama called for eliminating the
legislative filibuster last month , which
could occur if Democrats retake the
Senate . Some Republicans say it ¶ s time
to undo a wrong committed by Reid .
Senate Republicans are considering using
the ³ nuclear option ´ to end a potential
Democratic filibuster and confirm Neil
Gorsuch to the Supreme Court . Senate
Republicans deployed the ³ nuclear option ´
on Wednesday to drastically reduce the
time it takes to confirm hundreds of
President Trump ¶ s nominees .

Label: GroupLabel: Non Entity

Input Sentence: Retrieved Texts:

ĸ
灅灅

ĸ

Figure 1: A motivating example from WNUT-17
dataset. The retrieved texts help the model to correctly
predict the named entities of “democrats” and “republi-
can”.

However, there are a lot of application scenarios
in which document-level contexts are unavailable
in practice. For example, there are sometimes no
available contexts in users’ search queries, tweets
and short comments in various domains such as
social media and E-commerce domains. When pro-
fessional annotators annotate ambiguous named
entities in such cases, they usually rely on domain
knowledge for disambiguation. This kind of knowl-
edge can often be found through a search engine.
Moreover, when the annotators are not sure about
a certain entity, they are usually encouraged to find
related knowledge through a search engine (Wang
et al., 2019). Therefore, we believe that NER mod-
els can benefit from such a process as well.

In this paper, we propose to improve NER mod-
els by retrieving texts related to the input sentence
by an off-the-shelf search engine. We re-rank the re-
trieved texts according to their semantic relevance
to the input sentence and select several top-ranking
texts as the external contexts. Consequently, we
concatenate the input sentence and external con-
texts together as a new retrieval-based input view
and feed it to the pretrained contextual embedding
module, so that the resulting semantic representa-
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10 Xinyu Wang et al. (2021). “Improving Named Entity Recognition by External Context Retrieving and
Cooperative Learning”. In: ACL
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Erreurs en NER = problème de contextualisation?
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Figure 2: The architecture of our framework. An input sentence x is fed into a search engine to get k related
texts. The related texts are then fed into the re-ranking module. The framework selects l highest ranking related
texts output from the re-ranking module and feeds the texts to a transformer-based model together with the input
sentence. Finally, we calculate the negative likelihood loss LNLL and LNLL-EXT together with the CL loss (either
LCL-L2

or LCL-KL).

ternal contexts:

x̃ = [sep_token; x̂1; · · · ; x̂l]

where sep_token is a special token representing
a separate of sentences in the transformer-based
pretrained contextual embeddings (for example,
“[SEP]” in BERT).

2.2 NER Model
We solve the NER task as a sequence labeling prob-
lem. We apply a neural model with a CRF layer,
which is one of the most popular state-of-the-art
approaches to the task (Lample et al., 2016; Ma
and Hovy, 2016; Akbik et al., 2019). In the se-
quence labeling model, the input sentence x is fed
into a transformer-based pretrained contextual em-
beddings model to get the token representations
{v1, · · · , vn} by vi=embedi(x). The token rep-
resentations are fed into a CRF layer to get the
conditional probability p✓(y|x):

 (y0, y, vi) = exp(WT
y vi + by0,y) (1)

p✓(y|x) =

nQ
i=1

 (yi�1, yi, vi)

P
y02Y(x)

nQ
i=1

 (y0i�1, y
0
i, vi)

where  is the potential function and ✓ represents
the model parameters. Y(x) denotes the set of all
possible label sequences given x. y0 is defined
to be a special start symbol. WT 2 Rt⇥d and
b 2 Rt⇥t are parameters computing emission and
transition scores respectively. d is the hidden size
of v and t is the size of the label set. During train-
ing, the negative log-likelihood loss for the input
sequence with gold labels y⇤ is defined by:

LNLL(✓) = � log p✓(y
⇤|x) (2)

In our approach, we concatenate the external
contexts x̃ at the end of the input sentence x to
form the retrieval-based input view. The token
representations are now given by:

{v0
1, · · · , v0

n, · · · } = embed([x; x̃])

The architecture of our NER model is shown in
Figure 3. Now the conditional probability p✓(y|x)
becomes p✓(y|x, x̃). The loss function in Eq. 2
becomes:

LNLL-EXT(✓) = � log p✓(y
⇤|x, x̃) (3)

2.3 Cooperative Learning
In practice, there are two application scenarios for
the NER model: 1) offline prediction, which re-
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Contextualisation des phrases à analyser

Erreurs en NER = problème de contextualisation?

Amélioration des performances: significatives... Mais décevantes

1806

Social Media News Biomedical E-commerceWNUT-16 WNUT-17 CoNLL-03 CoNLL++ BC5CDR NCBI
Zhou et al. (2019) 55.43 42.83 - - - - -
Nguyen et al. (2020) 52.10 56.50 - - - - -
Nie et al. (2020) 55.01 50.36 - - - - -
Baevski et al. (2019) - - 93.50 - - - -
Wang et al. (2019) - - 93.43 94.28 - - -
Li et al. (2020) - - 93.33 - - - -
Nooralahzadeh et al. (2019) - - - - 89.93 - -
Bio-Flair (2019) - - - - 89.42 88.85 -
Bio-BERT (2020) - - - - - 87.70 -

Evaluation: W/O CONTEXT
LUKE (2020) 54.04 55.22 92.42 93.99 89.18 87.62 77.64
W/O CONTEXT 56.04 57.86 93.03 94.20 90.52 88.65 81.47
CL-L2 57.35† 58.68† 93.08 94.38† 90.70† 89.20† 82.43†

CL-KL 58.14† 59.33† 93.21† 94.55† 90.73† 89.24† 82.31†

Evaluation: W/ CONTEXT
W/ CONTEXT 57.43† 60.20† 93.27† 94.56† 90.76† 89.01† 83.15†

CL-L2 58.61† 60.26† 93.47† 94.62† 90.99† 89.22† 83.87†

CL-KL 58.98† 60.45† 93.56† 94.81† 90.93† 88.96† 83.99†

Table 2: A comparison among recent state-of-the-art models, the baseline and our approaches. † represents the
model is significantly stronger than the baseline model (W/O CONTEXT) with p < 0.05 on Student’s T test.

Evaluation
Science and Technology

Approach W/O CONTEXT W/ CONTEXT

Jia et al. (2019) 73.59 -
W/O CONTEXT 75.87 75.74
W/ CONTEXT 75.72 75.94
CL-L2 76.16 76.10
CL-KL 76.37 76.38

Table 3: A comparison of different approaches in trans-
fer learning. The models are trained on the CoNLL-03
dataset.

Evaluation
Approach W/O CONTEXT W/ CONTEXT

CL-L2 82.43 83.87
CL-KL 82.31 83.99
CL–L2+SEMI 82.88† 83.92
CL-KL+SEMI 82.58† 84.10

Table 4: A comparison between of CL approaches
with and without semi-supervised learning. SEMI rep-
resents the approaches with semi-supervised learning.
† represents the approach is significantly (p < 0.05)
stronger than the approach without semi-supervised
learning with the same input view.

ple. Results in Table 4 show that the accuracy of
both input views can be improved especially for the
input without external contexts, which shows the
effectiveness of CL in semi-supervised learning.

4 Analysis

We use the WNUT-17 dataset in the analysis.

SE FM BS BS+tf-idf
AVG. 59.95 59.54 60.20 59.71
BEST 61.79 60.89 62.29 60.96

Table 5: A comparison of different re-ranking ap-
proaches by the F1 scores on WNUT-17. SE: Search
engine. FM: Fuzzy match score. BS: BERTScore.

4.1 Comparison of Re-ranking Approaches

Various re-ranking approaches may affect the to-
ken representations of the model. We compare our
approach with three other re-ranking approaches.
The first is the ranking from the search engine with-
out any re-ranking approaches. The second is re-
ranking through a fuzzy match score. The approach
has been widely applied in a lot of previous work
(Gu et al., 2018; Zhang et al., 2018; Hayati et al.,
2018; Xu et al., 2020). The third is BERTScore
with tf-idf importance weighting which makes rare
words more indicative than common words in scor-
ing. We train our models (W/ CONTEXT) with
external contexts from these re-ranking approaches
and report the averaged and best results on WNUT-
17 in Table 5. Our results show that re-ranking with
BERTScore performs the best, which shows the se-
mantic relevance is helpful for the performance.
However, for BERTScore with the tf-idf weighting,
the accuracy of the model drops significantly (with
p < 0.05). The possible reason might be that the
tf-idf weighting gives high weights to irrelevant
texts with rare words during re-ranking.
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The first is the ranking from the search engine with-
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ranking through a fuzzy match score. The approach
has been widely applied in a lot of previous work
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2018; Xu et al., 2020). The third is BERTScore
with tf-idf importance weighting which makes rare
words more indicative than common words in scor-
ing. We train our models (W/ CONTEXT) with
external contexts from these re-ranking approaches
and report the averaged and best results on WNUT-
17 in Table 5. Our results show that re-ranking with
BERTScore performs the best, which shows the se-
mantic relevance is helpful for the performance.
However, for BERTScore with the tf-idf weighting,
the accuracy of the model drops significantly (with
p < 0.05). The possible reason might be that the
tf-idf weighting gives high weights to irrelevant
texts with rare words during re-ranking.

10

10 Xinyu Wang et al. (2021). “Improving Named Entity Recognition by External Context Retrieving and
Cooperative Learning”. In: ACL
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Contextualisation et modèles de langue

▶ Modèle de langue = sélection des documents du contexte (BERT-Score)
▶ Contextualisation directe possible avec un modèle de langue
▶ Ouverture: reformulation de phrase
▶ ... Voire recherche directe des entités

Expériences préliminaires: recherche de prompts

0RGHO���SURPSW�HQJLQHHULQJ

�

$QVZHU�IRUPDW�

ż ZH�H[SOLFLWO\�UHTXHVW�WKH�
PRGLILFDWLRQ�RI�WKH�RXWSXW

ż 5HTXHVWLQJ�RXWSXW�LQ�OLVW�IRUP�
SUREDEO\�PHDQV�\RX�JHW�
RXWSXW�ZLWK�OHVV�QRLVH�DQG�LQ�D�
PRUH�FRQFLVH�IRUPDW�

3HUVRQD�

ż *LYH�D�UROH�LQ�WKH�SURPSW�
WR�PRGLI\�WKH�//0�RXWSXW��

ż 7KH�RXWSXW�PRGLILFDWLRQ�LV�
QRW�SUHFLVHO\�JLYHQ��EXW�WKH�
UROH�ZLOO�IRUPDW�LW�

5HIOHFWLRQ�3DWWHUQ�

ż ZDV�RULJLQDOO\�FUHDWHG�WR�
DYRLG�IDOVH��LQFRUUHFW�RU�
DPELJXRXV�DQVZHUV

ż ZH�XVH�LW�WR�HQDEOH�//0�WR�
GLVDPELJXDWH�WKH�
VHQWHQFHV�SURGXFHG�

⇒ Dépassement des résultats de CL-NER11

11Herserant et al. 2024. En soumission
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Contextualisation et modèles de langue

▶ Modèle de langue = sélection des documents du contexte (BERT-Score)
▶ Contextualisation directe possible avec un modèle de langue
▶ Ouverture: reformulation de phrase
▶ ... Voire recherche directe des entités

Expériences préliminaires: premiers problèmes

([SpULPHQWDWLRQ���3URPSW�$QDO\VLV

Ɣ 2QO\�$//�UHGXFH�(PSW\�
SURPSWV�DQG�UHGXFH�D�ORW�
RQ�)DLO�JHQHUDWLRQ

Ɣ 3HUVRQD�KHOSV�WR�UHGXFH�
'HQLHG�RXWSXW

�

(PSW\��QR�JHQHUDWLRQ���'HQLHG��1R�JHQHUDWLRQ�SURYLGHG�GXH�WR�HWKLFDO�UHDVRQV���)DLO��JHQHUDWLRQ�GRHV�QRW�PDNH�VHQVH��DQG�
&RUUHFW��JHQHUDWLRQ�LV�H[SORLWDEOH�

� � � �

� � � �

� � � �
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Conclusion

▶ Auto-supervision

▶ Multi-modalité

▶ Dynamicité + encodage de la position

▶ Technique d’optimisation

▶ Contextualisation

▶ Gangner en performances en NER est difficile
Et publier en NER est encore plus difficile!

▶ 100% de performance n’est pas un objectif réaliste
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IA générative



Introduction NER, RE & Généralisation Extensions & applications IA Générative

Vers un détécteur d’entité génératif

S’il s’agit d’une traduction humain/machine... Autant partir d’un traducteur!

Une idée pas si récente:

11

11 Colin Raffel et al. (2020). “Exploring the limits of transfer learning with a unified text-to-text
transformer”. In: The Journal of Machine Learning Research 1
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Vers un détécteur d’entité génératif

S’il s’agit d’une traduction humain/machine... Autant partir d’un traducteur!
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Extraction d’information & question answering

Résoudre l’extraction en posant des questions:

Steve Jobs founded Apple in San Francisco .

Multi Turn Question Templates :

Which company is mentioned in the text ?

Who founded _____________ ?

11

11 Xiaoya Li et al. (2019). “Entity-Relation Extraction as Multi-Turn Question Answering”. In: ACL
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Extraction d’information & question answering

Résoudre l’extraction en posant des questions:

Steve Jobs founded Apple in San Francisco .

Multi Turn Question Templates :

Which company is mentioned in the text ? Apple

AppleWho founded _____________ ?

11

11 Xiaoya Li et al. (2019). “Entity-Relation Extraction as Multi-Turn Question Answering”. In: ACL
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Extraction d’information & question answering

Résoudre l’extraction en posant des questions:

Steve Jobs founded Apple in San Francisco .

Multi Turn Question Templates :

Which company is mentioned in the text ?

Who founded _____________ ?

Apple

BERT

SEP[CLS] Who SEP S J f A i S F .

MLP

founded Apple

S J f A i S F .

Apple Steve Jobs

11

11 Xiaoya Li et al. (2019). “Entity-Relation Extraction as Multi-Turn Question Answering”. In: ACL
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Introduction NER, RE & Généralisation Extensions & applications IA Générative

Extraction d’information & reformulation

En posant les bonnes questions:

Le problème devient trivial

⇒ Ouverture vers un sentence-BERT-Score
29/34



Introduction NER, RE & Généralisation Extensions & applications IA Générative

Extraction d’information & reformulation

Ou en posant la question directement:
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Métriques associées aux IA Génératives

L’IA Générative = beaucoup de problèmes pour évaluer les sorties du système!

Approche BLEU / ROUGE ↘↘ ! Besoin de métriques sur les contenus

⇒ BERT-Score

12

12 Tianyi Zhang et al. (2019). “BERTScore: Evaluating Text Generation with BERT”. In: ICLR
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Métriques associées aux IA Génératives

L’IA Générative = beaucoup de problèmes pour évaluer les sorties du système!

Approche BLEU / ROUGE ↘↘ ! Besoin de métriques sur les contenus

12

Générer des questions puis
répondre sur la source et la
cible

IAGen pour évaluer IAGen

12 Thomas Scialom et al. (2021). “QuestEval: Summarization Asks for Fact-based Evaluation”. In: EMNLP.
Association for Computational Linguistics
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A-t-on encore besoin d’extraction d’information?

Enjeux autour du RAG –Retrieval Augmented Generation–

Comment répondre à une question complexe?

1 Décomposer la question (avec un LLM)
2 Rechercher les documents pertinents / moteur de recherche
3 Rechercher les paragraphes/phrases pertinents (avec un LLM / BERT-score)
4 Construire une réponse par raisonnement automatique (LLM)
5 et/ou Dialoguer avec les documents Q/A (LLM)

31/34
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Raisonnement automatique

Limite des modèles de langue: inaptitude au calcul !

Comment aborder le raisonnement automatique?
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Raisonnement automatique

Limite des modèles de langue: inaptitude au calcul !

Comment aborder le raisonnement automatique?

2370

Reasoning Passage (some parts shortened) Question Answer BiDAF

Subtraction
(28.8%)

That year, his Untitled (1981), a painting of a haloed,
black-headed man with a bright red skeletal body, de-
picted amid the artists signature scrawls, was sold by
Robert Lehrman for $16.3 million, well above its $12
million high estimate.

How many more dol-
lars was the Untitled
(1981) painting sold
for than the 12 million
dollar estimation?

4300000 $16.3
million

Comparison
(18.2%)

In 1517, the seventeen-year-old King sailed to Castile.
There, his Flemish court . . . . In May 1518, Charles
traveled to Barcelona in Aragon.

Where did Charles
travel to first, Castile
or Barcelona?

Castile Aragon

Selection
(19.4%)

In 1970, to commemorate the 100th anniversary of the
founding of Baldwin City, Baker University professor
and playwright Don Mueller and Phyllis E. Braun,
Business Manager, produced a musical play entitled
The Ballad Of Black Jack to tell the story of the events
that led up to the battle.

Who was the Uni-
versity professor that
helped produce The
Ballad Of Black Jack,
Ivan Boyd or Don
Mueller?

Don
Mueller

Baker

Addition
(11.7%)

Before the UNPROFOR fully deployed, the HV clashed
with an armed force of the RSK in the village of Nos
Kalik, located in a pink zone near Šibenik, and captured
the village at 4:45 p.m. on 2 March 1992. The JNA
formed a battlegroup to counterattack the next day.

What date did the JNA
form a battlegroup to
counterattack after the
village of Nos Kalik
was captured?

3 March
1992

2 March
1992

Count
(16.5%)
and Sort
(11.7%)

Denver would retake the lead with kicker Matt Prater
nailing a 43-yard field goal, yet Carolina answered as
kicker John Kasay ties the game with a 39-yard field
goal. . . . Carolina closed out the half with Kasay nail-
ing a 44-yard field goal. . . . In the fourth quarter, Car-
olina sealed the win with Kasay’s 42-yard field goal.

Which kicker kicked
the most field goals?

John
Kasay

Matt
Prater

Coreference
Resolution
(3.7%)

James Douglas was the second son of Sir George Dou-
glas of Pittendreich, and Elizabeth Douglas, daughter
David Douglas of Pittendreich. Before 1543 he mar-
ried Elizabeth, daughter of James Douglas, 3rd Earl of
Morton. In 1553 James Douglas succeeded to the title
and estates of his father-in-law.

How many years af-
ter he married Eliza-
beth did James Dou-
glas succeed to the ti-
tle and estates of his
father-in-law?

10 1553

Other
Arithmetic
(3.2%)

Although the movement initially gathered some 60,000
adherents, the subsequent establishment of the Bulgar-
ian Exarchate reduced their number by some 75%.

How many adherents
were left after the es-
tablishment of the Bul-
garian Exarchate?

15000 60,000

Set of
spans
(6.0%)

According to some sources 363 civilians were killed in
Kavadarci, 230 in Negotino and 40 in Vatasha.

What were the 3 vil-
lages that people were
killed in?

Kavadarci,
Negotino,
Vatasha

Negotino
and 40 in
Vatasha

Other
(6.8%)

This Annual Financial Report is our principal financial
statement of accountability. The AFR gives a compre-
hensive view of the Department’s financial activities ...

What does AFR stand
for?

Annual
Financial
Report

one of the
Big Four
audit firms

Table 1: Example questions and answers from the DROP dataset, showing the relevant parts of the associated
passage and the reasoning required to answer the question.

a recent trend in creating datasets with adversarial
baselines in the loop (Paperno et al., 2016; Min-
ervini and Riedel, 2018; Zellers et al., 2018; Zhang
et al., 2019; Zellers et al., 2019). In our case, in-
stead of using an adversarial baseline to filter auto-
matically generated examples, we use it in a crowd-
sourcing task, to teach crowd workers to avoid easy
questions, raising the difficulty level of the ques-
tions they provide.

Neural symbolic reasoning DROP is designed
to encourage research on methods that combine
neural methods with discrete, symbolic reasoning.

We present one such model in Section 6. Other re-
lated work along these lines has been done by Reed
and de Freitas (2016), Neelakantan et al. (2016),
and Liang et al. (2017).

3 DROP Data Collection

In this section, we describe our annotation proto-
col, which consists of three phases. First, we auto-
matically extract passages from Wikipedia which
are expected to be amenable to complex questions.
Second, we crowdsource question-answer pairs on
these passages, eliciting questions which require

13

13 Dheeru Dua et al. (2019). “DROP: A Reading Comprehension Benchmark Requiring Discrete Reasoning
Over Paragraphs”. In: Proceedings of NAACL-HLT
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Raisonnement automatique

Limite des modèles de langue: inaptitude au calcul !

Comment aborder le raisonnement automatique?

Task: Basic Math
Problem: Before December, cus-
tomers buy 1346 ear muffs from
the mall. During December, they
buy 6444, and there are none. In
all, how many ear muffs do the cus-
tomers buy?

Predicted Answer: 1346.0 7

Generated Program:
answer = 1346.0 + 6444.0
print(answer)
# Result ==> 7790.0

Gold Answer: 7790.0 3

Task: Muldiv
Problem: Tickets to the school
play cost 6 for students and 8 for
adults. If 20 students and 12 adults
bought tickets, how many dollars’
worth of tickets were sold?

Predicted Answer: 48 7

Generated Program:
a=20*6
b=12*8
c=a+b
answer=c
print(answer)
# Result ==> 216.0

Gold Answer: 216 3

Figure 4: Examples with Bhāskara on Basic Math and Muldiv.

A Qualitative Examples
Figures 4 and 5 give examples of input-output behavior of Bhāskara. Figure 6
gives an example of a non-compiling output program.

B Dataset Collection
Tables 12-15 give examples and datasets from each task for each category.

Category Examples Datasets

Math Table 8 Table 12
Language Table 9 Table 13
Format Table 10 Table 14
Knowledge Table 11 Table 15

Table 7: Examples and datasets meta-table.

B.1 Expert annotation
In the worker qualification process, we ask each worker to annotate 30 questions.
We manually verify each annotation and qualify those whose Python annotations
are satisfactory. We also provide feedback such as "write simpler programs, use
representative variable names instead of just letters, add comments wherever
possible" to annotators after the worker qualification process. We instruct

22

13

13 Swaroop Mishra et al. (2022). “LILA: A Unified Benchmark for Mathematical Reasoning”. In:
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing
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Raisonnement automatique

Limite des modèles de langue: inaptitude au calcul !

Comment aborder le raisonnement automatique?�=(140(�'(�6",7322(1(28�291z6,59(
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13 Fengbin Zhu et al. (2021). “TAT-QA: A Question Answering Benchmark on a Hybrid of Tabular and
Textual Content in Finance”. In: ACL 32/34
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Raisonnement automatique

Limite des modèles de langue: inaptitude au calcul !

Comment aborder le raisonnement automatique?

▶ Des jeux de données: Drop, Lila, TatQA...
▶ Des propositions générales:

▶ Approches spécifiques
▶ Chain of Thoughs, structuration des réponses
▶ Capacité à coder
▶ Approches mixtes internes/externes ≈ toolsformer13

Comment évaluer? Peut-on évaluer les étapes intermédiaires du raisonnement ou
seulement le résultat final? 14

13 Timo Schick et al. (2023). “Toolformer: Language models can teach themselves to use tools”. In:
arXiv preprint arXiv:2302.04761

14 Sarah Abchiche et al. (2023). “Intégration du raisonnement numérique dans les modèles de langue: État
de l’art et direction de recherche”. In: CORIA. ATALA
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Modèle de langue & limite des prompts

▶ 500 tokens avec BERT

▶ 16k avec LongFormer15

▶ 2000 avec chatGPT

▶ 32k avec GPT4

▶ >50k avec LongT5
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Figure 2: Illustration of the two attention mechanisms we experimented with in LongT5.

given choice of r, complexity is linear in input
sequence length l: O(l ⇥ r).

3.1.2 Transient Global Attention (TGlobal)
To allow input tokens to interact with each other in
each layer of the encoder at a longer range than Lo-
cal Attention’s local radius, we introduce Transient
Global Attention as a modification of ETC’s global-
local attention in a “fixed blocks” pattern. Namely,
we divide the input sequence into blocks of k to-
kens, and for each block we compute a global token
by summing (and then normalizing) the embed-
dings of every token in the block (see Figure 2.b).
Now when computing attention, we allow each
input token to attend not only to nearby tokens
like in Local Attention, but also to every global
token. We call these global tokens transient be-
cause in contrast to ETC-like global-local attention
patterns, these tokens are dynamically constructed
(and subsequently discarded) within each attention
operation, removing any requirement for deciding
which input tokens should be treated as “global”.

TGlobal attention only introduces a couple new
parameters4: (1) T5-style relative position biases
representing the distance from an input token’s
block to the block of each global token it’s attend-
ing to, and (2) T5-style layer normalization parame-
ters for normalizing each global token’s embedding.
The rest of the parameters are identical to T5, and
we accommodate sequence packing by addition-

example in the same input sequence to increase training effi-
ciency. This is specially useful in LongT5, since with the large
input lengths used in our model, if many examples are short,
most of the input sequence would be dedicated to padding,
wasting significant computation.

4For base models, we introduced 10k additional parame-
ters, 25k for large, and 50k for xl.

ally masking attention from input tokens to global
tokens of other examples. We found block size
k = 16 to be sufficient in practice. Notice thus,
that TGlobal attention introduces a block of l ⇤ l/k
additional attention key-value pairs to calculate on
top of Local Attention (l input tokens, attending
to l/k global tokens; represented by the right most
rectangle in Figure 2.b), hence for input sequence
length l, complexity is O(l(r + l/k)).

3.2 PEGASUS Principle Sentences
Generation Pre-training

T5 is pre-trained with a span corruption objective,
where spans of consecutive input tokens are re-
placed with a mask token and the model is trained
to reconstruct the masked-out tokens. While it is
effective, recent work on masked language model-
ing (MLM) (Liu et al., 2019; Zhang et al., 2019b)
shows that carefully selecting the prediction objec-
tive could lead to significantly better performance.
One argument is that predicting more informative
tokens from the text could force the model to learn
better semantics of the text. Motivated by that,
we explore masking and generating the principle
sentences from the text. In particular, we adopt
the Gap Sentences Generation with Principle Ind-
Uniq strategy from Zhang et al. (2019a), which
was used for summarization pre-training.

Following Zhang et al. (2019a), we select
top-m scored (Principle) sentences based on
ROUGE-F1 score (Lin, 2004) using si =
rouge(xi, D \ {xi}, 8i), where i is the sentence
index, D is the collection of sentences in the docu-
ment. Each sentence is scored independently (Ind),
and each n-gram is only counted once (Uniq).

16

▶ Hierarchiser l’attention ⇒ factoriser les calculs

▶ Mélanger attention locale (rapide) et attention globale clusterisée (+chère)

⇒ Vers des systèmes >300k tokens pour gérer des livres

15 Iz Beltagy, Matthew E. Peters, and Arman Cohan (2020). “Longformer: The Long-Document
Transformer”. In: arXiv

16 Mandy Guo et al. (2022). “LongT5: Efficient Text-To-Text Transformer for Long Sequences”. In: NAACL
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Conclusion

▶ Beaucoup de questions ouvertes autour des LLM

▶ Knowledge bases ̸= Extraction d’information...

⇒ beaucoup de questions sur l’extraction d’information

▶ Mutation des outils, des formulations, des performances, du mode
d’interaction

▶ Limites sur les modèles de langue
▶ Exploiter des sorties au format textuel17

▶ Taille des entrées18

▶ Risque d’hallucination19

▶ Taille des modèles de langue: quelle tendance pour le futur?

17Herserant et al. 2024. En soumission
18 Florian Le Bronnec et al. (2024). “LOCOST: Long Contexts with State Space Encoders for Conditional

Text Generation”. In: En soumission
19 Pierre Erbacher et al. (2024). “Navigating Uncertainty: Optimizing API dependency for Hallucination

Reduction in Closed-Book QA”. In: En soumission
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