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Differents kinds of hallucinations

factuality vs faithfulness 1

Published as a conference paper at ICLR 2025

Patient Data (Input):
Age Sex Symptoms Diagnosis Treatment
45 Male Persistent cough Pneumonia Antibiotics

Output Examples:
Faithful Factful Output

No No 21 y.o. female with a headache due to a migraine is given antibiotics.
No Yes 45 y.o. male with a cough due to pneumonia is given amoxicillin.
Yes Yes 45 y.o. male with a cough due to pneumonia is given antibiotics.

Table 1: An example of faithful and factful combinations in LLM for data-to-text generation in a
medical context. Unfaithful spans are highlighted in red. While amoxicillin is a common antibiotic
prescription for pneumonia, the name of the antibiotics is not the mentioned in the table.

costly, not scalable, and the resulting annotations might not transfer to other domains. To circumvent
the lack of annotated data, some unsupervised methods have been proposed. A first line of research
consists of leveraging a contrastive loss on hidden representations (Zhao et al., 2020; Kryscinski
et al., 2019). These methods have demonstrated improvements on small models (around 500 million
parameters), but they have not yet been benchmarked on recent LLMs. Our evaluations indicate
that their effectiveness does not appear to extend to these larger models. Another direction consists
of altering the decoding process of pre-trained models (Shi et al., 2023; van der Poel et al., 2022).
While these methods work well on generalist text datasets, we found that on more domain specific
tasks where a heavy fine-tuning is required such as data-to-text generation, these methods struggle to
improve over standard fine-tuning of models (see Section 5).

Acknowledging these limitations, we propose a novel fine-tuning framework, tailored for recent
LLMs. Drawing inspiration from recent work (Rafailov et al., 2023), we propose a method tailored
for recent LLMs that trains the model to disfavor ungrounded generations. Unlike typical preference-
tuning which involves human annotation of model-generated outputs, we aim for a self-supervised
process to generate a dataset of prefered and dispreferred samples. Here, in the context of faithfulness,
the goal is to teach the model to prefer the context-grounded reference labels over unfaithful ones that
present hallucinations. A challenge then lies in the generation of representative unfaithful examples
that convey effective learning signals. These examples should closely resemble target sentences while
exhibiting realistic hallucinations. In conditional text generation tasks, hallucinations occur when
the model’s internal knowledge improperly influences the generation process (Maynez et al., 2020).
Building on this observation, we propose an original procedure for automatically generating realistic
examples. This generation process is fully unsupervised and does not require external resources.
We apply our method to six datasets across various domains for data-to-text generation and text
summarization. Data-to-text generation (Lin et al., 2024) involves converting structured data like
tables into coherent language, while summarization condenses longer texts while preserving key
information. Faithfulness is essential for both tasks to ensure the generated text accurately reflects
the input data. To summarize, in this paper:

• We introduce SCOPE, a new method that leverages ideas from preference training by using a
self-supervised generated dataset. In this approach, the model is trained to favor reference labels
over carefully generated unfaithful samples.

• We empirically show that our approach significantly enhances the faithfulness of text generated by
fine-tuned LLMs, surpassing current faithfulness-enhanced methods for conditional text generation.

• We bring new insights on the behavior of preference-tuning by analyzing its sensitivity to the effect
of negative samples.

Our experiments reveal that training using SCOPE achieves up to a 14% improvement in faithfulness
metrics over existing methods, according to automatic evaluation metrics. Furthermore, evaluations
by both GPT-4 and human judges indicate that the generations with SCOPE are substantially more
faithful, with an improved preference win rate against the supervised fine-tuned model that is in
average 2.1 times higher than the baselines.

2

Which answer if I ask you: Where is the Eiffel tower?
and giving you a document claiming : The Eiffel tower is in Roma

1 Huang et al. (2025) ACM Transactions on Information Systems
A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions.
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LLMs: tools that we are not able to evaluate

The only AI system that we are not able to evaluate properly !
⇒ almost a surprise that it works so well

ROUGE Metric:

a chat GPT alternative proposal for LLMs : Limitless Language Mazes
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2 T. Herserant, V. Guigue; PAKDD 2025
SEval-Ex: A Statement-Level Framework for Explainable Summarization Evaluation

3 A. Razvan, C-E. Simon, F. Caspani, V. Guigue; ICLR 2025, Work. QUESTION
Towards Lighter and Robust Evaluation for Retrieval Augmented Generation
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From lexical to semantic
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Figure 1: Illustration of the QuestEval framework: the blue area corresponds to the precision-oriented frame-
work proposed by Wang et al. (2020). The orange area corresponds to the recall-oriented SummaQA (Scialom
et al., 2019). We extend it with a weighter component for an improved recall (red area). The encompassing area
corresponds to our proposed unified approach, QuestEval.

up the challenge of summarization evaluation, we
propose QuestEval, a new reference-less evalua-
tion metric, which is found to correlate dramatically
better with humans judgments. Our contributions
are as follows:

• We show that, by unifying the precision and
recall-based QA metrics, we obtain a more
robust metric;

• We propose a method to learn the saliency of
the generated queries, allowing to integrate
the notion of information selection;

• We evaluate QuestEval on two cor-
pora containing annotated summaries from
CNN/Daily Mail (Nallapati et al., 2016) and
XSUM (Narayan et al., 2018) datasets. The
proposed metric obtains state-of-the-art re-
sults in terms of correlation with humans judg-
ments, over all the evaluated dimensions. No-
tably, QuestEval is effective at measuring
factual consistency, a crucial yet challenging
aspect for summarization.

2 Related Work

Summarization Metrics The most popular eval-
uation metric for summarization is ROUGE (Lin,
2004), which computes the recall of reference n-
grams in the evaluated summary. Other n-grams
based metrics have been proposed such as CIDEr
(Vedantam et al., 2015) and METEOR (Lavie and
Agarwal, 2007), but none of them correlates bet-
ter with humans according to SummEval, a recent
large study conducted by Fabbri et al. (2020).

Recent works have leveraged the success of pre-
trained language models. Zhang et al. (2019b) pro-
posed BERTScore, which uses BERT (Devlin et al.,
2018) to compute a similarity score between the
reference and the evaluated text. However, its per-
formance is similar to that of ROUGE (Fabbri et al.,
2020). Several works have explored using natural
language inference (NLI) models to evaluate the
factual consistency of summaries (Kryściński et al.,
2019; Falke et al., 2019; Maynez et al., 2020), find-
ing mixed results in using NLI models rather than
QA models.

NLI
LLM as a judge
PARENT
Entity F1 :
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NLI

Premise: An adult dressed in black holds a stick.
Hypothesis: An adult is walking away, empty-handed.
Label: contradiction
Explanation: Holds a stick implies using hands so it is not empty-handed.

Premise: A child in a yellow plastic safety swing is laughing as a dark-haired woman
in pink and coral pants stands behind her.
Hypothesis: A young mother is playing with her daughter in a swing.
Label: neutral
Explanation: Child does not imply daughter and woman does not imply mother.

Premise: A man in an orange vest leans over a pickup truck.
Hypothesis: A man is touching a truck.
Label: entailment
Explanation: Man leans over a pickup truck implies that he is touching it.

Figure 1: Examples from e-SNLI. Annotators were given the premise, hypothesis, and label. They
highlighted the words that they considered essential for the label and provided the explanations.

we have collected a large corpus of human-annotated explanations for the Stanford Natural Lan-
guage Inference (SNLI) dataset [3]. We chose SNLI because it constitutes an influential corpus for
natural language understanding that requires deep assimilation of fine-grained nuances of common-
sense knowledge. We call our explanation-augmented dataset e-SNLI, which we collected to enable
research in the direction of training with and generation of free-form textual justifications.

In order to demonstrate the efficacy of the e-SNLI dataset, we first show that it is much more difficult
to produce correct explanations based on spurious correlations than to produce correct labels. We
then implement models that, given a premise and a hypothesis, predict a label and an explanation.
We also investigate how the additional signal from explanations received at train time can guide
models into learning better sentence representations. Finally, we look into the transfer capabilities
of our model to out-of-domain NLI datasets.

2 Background

The task of recognizing textual entailment is a critical natural language understanding task. Given
a pair of sentences, called the premise and hypothesis, the task consists of classifying their relation
as either (a) entailment, if the premise entails the hypothesis, (b) contradiction, if the hypothesis
contradicts the premise, or (c) neutral, if neither entailment nor contradiction hold. The SNLI
dataset [3], containing 570K data points of human-generated triples (premise, hypothesis, label),
has driven the development of a large number of neural network models [25, 21, 22, 6, 19, 5, 7].

Conneau et al. [7] showed that training universal sentence representations on SNLI is both more ef-
ficient and more accurate than the traditional training approaches on orders of magnitude larger, but
unsupervised, datasets [17, 14]. We take this approach one step further and show that an additional
layer of explanations on top of the label supervision brings further improvement.

Recently, Gururangan et al. [13] cast doubt on whether models trained on SNLI are learning to
understand language, or are largely fixating on spurious correlations, also called artifacts. For ex-
ample, specific words in the hypothesis tend to be strong indicators of the label, e.g., friends, old
appear very often in neutral hypotheses, animal, outdoors appear most of the time in entailment
hypotheses, while nobody, sleeping appear mostly in contradiction hypothesis. They show that a
premise-agnostic model, i.e., a model that only takes as input the hypothesis and outputs the label,
obtains 67% test accuracy. In section 4.1 we show that it is much more difficult to rely on artifacts
to generate explanations than to generate labels.

3 Collecting explanations

We present our collection methodology for e-SNLI, for which we used Amazon Mechanical Turk.
The main question that we want our dataset to answer is: Why is a pair of sentences in a relation of

2
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NLI
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PARENT
Player Team Points

LeBron James Lakers 30
Kevin Durant Suns 28

Generated text (y):

LeBron James scored 30 points for the Lak-
ers.

Reference text (r):

LeBron James scored 30 points for the Lak-
ers, while Kevin Durant added 28 points for
the Suns.

PARENT(y , r) =

2 · Precision · Recall
Precision + Recall

Precision =
∑
n∈y

p(n) ·match(n, r)

Recall =
∑
n∈r

p(n) ·match(n, y)

Entity F1 :
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Pretty good results... But at a cost

Black box (BertScore4, LLM as a judge5)

Scale problem (BertScore often very high)

Computational cost of numerous LLM calls (NLI6, QuestEval7)

Lack of reliability (PARENT8 pairing / scaling;
Entity extraction : domain shift/partial detection9)

4Zhang et al. ICLR 2019
BERTScore: Evaluating Text Generation with BERT.

5Zheng et al. NeurIPS 2023.
Judging llm-as-a-judge with mt-bench and chatbot arena.

6Bowman et al. EMNLP 2015
A large annotated corpus for learning natural language inference.

7Scialom et al. EMNLP 2021. QuestEval: Summarization Asks for Fact-based Evaluation.
8Dhingra et al. ACL 2019

Handling Divergent Reference Texts when Evaluating Table-to-Text Generation.
9Nan et al. E-ACL 2021.

Entity-level Factual Consistency of Abstractive Text Summarization
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Evaluating RAG: Quantifying Retrieval Performance

Contribution10: making LLM as a judge more interpretable + quantifiable

1st workshop of ”Quantify Uncertainty and Hallucination in Foundation Models: The Next
Frontier in Reliable AI” at ICLR’25

Figure 1: Evaluation pipeline for answer correctness. First, the simplifier extracts the statements
of the answer and the ones of the ground truth. Afterwards, the evaluator labels the statements
according to the definitions. Finally, the parser extracts the labelled statements and calculates the
metric.

3 METHODOLOGY

3.1 FACTUAL EVALUATION

Following the evaluation methods emphasized by Manakul et al. (2023) and Es et al. (2023), we will
evaluate the answers using metrics that can be grounded in facts. We define a fact or a statement as
a declarative sentence that conveys information which can be either true or false. For the example
shown in Figure 1, it can be noticed that the answer Albert Einstein was born in Barcelona Spain,
1879 was split into three statements: Albert Einstein was born in Spain, Albert Einstein was born
in Barcelona, Albert Einstein was born in 1879. The label of each statement will be assigned with
respect to either a ground truth or a context passage, depending on the calculated metric. By breaking
the generated answers into smaller units, we can reduce the complexity of evaluating the truthfulness
of each individual fact.

3.1.1 CORRECTNESS

The first metric is the answer correctness. In a RAG setting, an answer is considered correct if
the statements from the ground truth directly support the statements of the answer. Section B.1
provides the definitions for the labels which can be assigned to the statements. The final score can
be calculated as either the recall or the f1 score of the classified statements. The recall is a softer
version of correctness because it ignores false positive statements, which are verbose information
that appears in the answer but not in the ground truth. For instance, if an LLM needs to answer
the question In which country was Albert Einstein born?, a possible answer is Germany. However,
an LLM would provide more information, such as Germany’s population, which is irrelevant to
the ground truth answer. The harsher version is the f1-score, which penalises answers that contain
verbose information. In general, the f1-score is more suitable for domain adaptation scenarios as the
answer should match the structure of the ground truth. Meanwhile, the recall is ideal for scenarios
where we seek specific information without being concerned about additional details. Since we
work in a few-shot setting, and the chosen dataset was not annotated without considering the verbose
information, we will use the recall and ignore the additional information.

Recall =
TP

TP + FN
F1 =

TP

TP + 0.5 · (FP + FN)

3

10 A. Razvan, C-E. Simon, F. Caspani, V. Guigue; ICLR 2025, Work. QUESTION
Towards Lighter and Robust Evaluation for Retrieval Augmented Generation
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RAG Evaluation results

1st workshop of ”Quantify Uncertainty and Hallucination in Foundation Models: The Next
Frontier in Reliable AI” at ICLR’25

Table 1: Correctness and faithfulness experiments. The evaluator represents either a deterministic
metric or an LLM. BoT stands for bag-of-token. L3 stands for Llama3 and G2 for Gemma2. The
Parsing column denotes the parsing strategy: R1 for the first regular expression, R2 for the second
one and C for constrained generation. F1 AUC is the area under the curve of the F1-score. ⇢ and ⌧
are the Spearman and Kendall correlation. The last columns are the lower bound, the mean and the
upper bound for the Wikieval questions. The best configurations are in bold

PIPELINE CORRECTNESS FAITHFULNESS

EVALUATOR PARSING F1 AUC ⇢ ⌧ WORST MIDDLE BEST

BOT RECALL N/A 88.78 56.89 52.89 N/A N/A N/A
RAGAS (GPT3.5-TURBO) N/A N/A N/A N/A N/A N/A 0.95

K-PRECISION N/A N/A N/A N/A N/A N/A 0.96
L3 8B 4 BIT R1 87.44 30.21 28.54 0.74 0.84 0.94
L3 8B 4 BIT R2 89.62 37.36 36.54 0.78 0.85 0.92
L3 8B 4 BIT C 90.57 44.41 43.28 0.72 0.89 1.0

L3.1 8B 4 BIT R1 86.14 36.89 34.34 0.74 0.79 0.84
L3.1 8B 4 BIT R2 86.47 40.02 37.74 0.78 0.82 0.86
L3.1 8B 4 BIT C 75.33 30.84 29.50 0.72 0.83 0.94
G2 9B 4 BIT R1 92.20 52.55 50.21 0.92 0.94 0.96
G2 9B 4 BIT R2 93.83 ±0.27 62.06 ±1.83 60.49 ±1.54 0.82 0.88 0.94
G2 9B 4 BIT C 89.05 55.01 52.10 0.82 0.90 0.98

L3 70B 16 BIT R1 86.42 49.44 45.41 0.94 0.95 0.96
L3 70B 16 BIT R2 92.72 ±0.20 63.59 ±1.51 60.55 ±1.39 0.94 0.95 0.96
L3 70B 16 BIT C 77.21 40.52 37.23 0.88 0.91 0.94

Figure 2: The density distribution plots of the correctness evaluators that use the second regular
expression as parser. The distribution of the correct and incorrect answers are marked with blue and
red, respectively. The labels were chosen according to the human annotations.

the generated answer does not use the exact words as the ones in the ground truth, it cannot capture
the semantic similarities, resulting in a penalised score.

One impressive result is the Gemma2 9B, which uses the deterministic parser, as it performs simi-
larly to Llama3 70B, although it is about seven times lighter and has four times lower precision. In
Figure 2, we can observe that Gemma2 is usually very confident in its decisions, assigning a score
of either 0 or 1 almost all the time. However, it misclassified a considerable percentage of incorrect
answers by giving them a score of 1. Llama3 70B minimizes the number of wrong answers that
have a score of 1, but the distribution of the incorrect answers remains dispersed. Nevertheless, both
Gemma2 9B and Llama3 70B can maintain the distribution of good answers above the score of 0.5.
Unfortunately, Llama3 8B cannot distinguish between correct and incorrect answers, assigning a
score of 1 almost every time. Llama3.1 has both distributions sparsed between 0 and 1.

Results Faithfulness Table 1 displays the results for the faithfulness experiments conducted on
WikiEval. Each experiment has three calculated scores according to the worst, middle and best
case. Since we had minimal information regarding how the final accuracy score was calculated in
the original paper Es et al. (2023), we assumed that the best-performing seed was reported, that
being the best case score. We also assume that a good evaluator should have a high accuracy score
for the lower bound, and it needs to minimize the difference between the best and worst case. The
baseline with whom we compare the LLM evaluators are the results declared by Es et al. (2023) and

7
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1st workshop of ”Quantify Uncertainty and Hallucination in Foundation Models: The Next
Frontier in Reliable AI” at ICLR’25
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the generated answer does not use the exact words as the ones in the ground truth, it cannot capture
the semantic similarities, resulting in a penalised score.

One impressive result is the Gemma2 9B, which uses the deterministic parser, as it performs simi-
larly to Llama3 70B, although it is about seven times lighter and has four times lower precision. In
Figure 2, we can observe that Gemma2 is usually very confident in its decisions, assigning a score
of either 0 or 1 almost all the time. However, it misclassified a considerable percentage of incorrect
answers by giving them a score of 1. Llama3 70B minimizes the number of wrong answers that
have a score of 1, but the distribution of the incorrect answers remains dispersed. Nevertheless, both
Gemma2 9B and Llama3 70B can maintain the distribution of good answers above the score of 0.5.
Unfortunately, Llama3 8B cannot distinguish between correct and incorrect answers, assigning a
score of 1 almost every time. Llama3.1 has both distributions sparsed between 0 and 1.

Results Faithfulness Table 1 displays the results for the faithfulness experiments conducted on
WikiEval. Each experiment has three calculated scores according to the worst, middle and best
case. Since we had minimal information regarding how the final accuracy score was calculated in
the original paper Es et al. (2023), we assumed that the best-performing seed was reported, that
being the best case score. We also assume that a good evaluator should have a high accuracy score
for the lower bound, and it needs to minimize the difference between the best and worst case. The
baseline with whom we compare the LLM evaluators are the results declared by Es et al. (2023) and

7
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RAG Evaluation results

A nice result measuring the impact on output contraint

1st workshop of ”Quantify Uncertainty and Hallucination in Foundation Models: The Next
Frontier in Reliable AI” at ICLR’25

Figure 5: The parsing strategies for extracting the labelled statements. The deterministic parsing
uses regular expressions to match the labels. The constrained generation parsing collects the labelled
statements in a JSON schema and then returns the number of matches for each label.

• True Positive (TP): if the statement appears in the answer and it is directly supported by a
statement from the ground truth

• False Positive (FP): if the statement appears in the answer but is not directly supported by
a statement from the ground truth

• False Negative (FN): if it appears in the ground truth but does not support any statement
from the answer

B.2 STATEMENTS FAITHFULNESS

While calculating faithfulness, a statement can be labelled as:

• PASSED: if the statement can be inferred from the context
• FAILED: if the statement cannot be inferred from the context

C PARSING STRATEGIES

C.1 DETERMINISTIC PARSING

The first regex (Regex 1) is trying to match the VERDICT keyword as well as the corresponding
label. Therefore, depending on the calculated metric, we apply as many regular expressions as labels
that need to be extracted.

For answer correctness:

• True Positive: \bVERDICT: TP\b
• False Positive: \bVERDICT: FP\b
• False Negative: \bVERDICT: FN\b

For faithfulness:

• PASSED: \bVERDICT: PASSED\b
• FAILED: \bVERDICT: FAILED\b

The second regex (Regex 2) matches the same pattern as the first regex, with the exception that
it allows the possibility of having additional characters between the VERDICT keyword and the
corresponding label.

11

9/29



Introduction Evaluation Optimization Conclusion

Summary evaluation

We can do the same for summary evaluation
SEval-Ex 3

Fig. 1. SEval-Ex evaluation pipeline. First, an LLM extract statements during the (1)
Statement Extraction phase, then during (2) Verdict Reasoning phase, an LLM labels
the statements. Finally, a (3) parser extract the confusion matrix that made the score.

reference texts. While these metrics are computationally efficient and offer struc-
tural interpretability through visible lexical overlap, they exhibit significant lim-
itations. Notably, they inadequately handle paraphrasing and synonymy, fail to
capture deeper semantic equivalence, and overly depend on exact word matching.

Embedding-based Approaches The introduction of contextual embeddings,
such as those from BERT [3], facilitated the development of more sophisticated
evaluation metrics that aim to capture semantic similarity beyond surface lex-
ical overlap. Metrics like BERTScore [21] compute similarity scores based on
token embeddings, while MoverScore [22] employs Earth Mover’s Distance to
compare distributions of embeddings between the candidate and reference texts.
Despite these advancements, BERTScore has revealed significant limitations [8].
Specifically, embedding-based approaches may provide a coarse-grained semantic
representation that overlooks nuanced differences, making them less sensitive to
minor errors, especially when the candidate text is lexically or stylistically simi-
lar to the reference. This insensitivity can result in misleadingly high similarity
scores despite critical differences in meaning.

Task-specific Evaluation Frameworks To address the unique challenges of
summarization evaluation, specialized frameworks have been developed that fo-
cus on specific aspects such as factual consistency and overall quality. For in-
stance, FactCC [11] employs natural language inference (NLI) models to de-
tect factual inconsistencies between the summary and the source text. Similarly,
QAGS [20] and QuestEval [17] utilize question answering techniques to verify
factual accuracy by generating and answering questions derived from the sum-
maries and source documents.

⇒ At the end, we do not transform the original text
⇒ We split the statements extraction on the summary

10/29
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Summary evaluation

We can do the same for summary evaluation

8 T. Herserant and V. Guigue

Comparison with Existing Approaches Table 2 reveals several key insights
about summarization evaluation approaches:
Traditional Metrics: N-gram based approaches (ROUGE family) show consis-
tently poor correlation across all dimensions (0.11-0.19), but can be interpretable.
Semantic Metrics: Despite sophisticated embedding spaces, BERTScore and
MOVERScore, which are black-box, achieve limited consistency correlation (0.11-
0.16). QuestEval have a significant improvement (0.306) but, based on generated
questions and generated answers, the explainability is controversial.
LLM-based Methods: While general-purpose LLM evaluators like G-Eval show
strong performance across all dimensions (0.52-0.58) but are expensive to run
and still black box. Our specialized approach achieves superior consistency cor-
relation (0.58 vs 0.52) with interpretability.

Table 2. Spearman correlation comparison of our approach against other summariza-
tion metrics on SummEval dataset

Architecture Metric Fluency Consistency Coherence Relevance Average
GPT4 G-Eval (Best) 0.455 0.507 0.582 0.547 0.523
GPT3 GPTScore 0.403 0.449 0.434 0.381 0.417

n-gram
ROUGE-1 0.115 0.160 0.167 0.326 0.192
ROUGE-2 0.159 0.187 0.184 0.290 0.205
ROUGE-L 0.105 0.115 0.128 0.311 0.165

Embedding based
BERTScore 0.193 0.110 0.284 0.312 0.225
MOVERScore 0.129 0.157 0.159 0.318 0.191
BARTScore 0.356 0.382 0.448 0.356 0.385

T5
QuestEval 0.228 0.306 0.182 0.268 0,246
UniEval 0.449 0.446 0.575 0.426 0.474

qwen2.5:72b SEval-Ex 0.351 0.580 0.264 0.300 0.373

These results validate our key design principle: by focusing specifically on
consistency evaluation and implementing direct source comparison, we can sur-
pass even sophisticated LLM-based approaches on this crucial dimension. The
lower performance on other aspects is an expected trade-off of this specialized
design, suggesting that comprehensive summarization evaluation may require
combining multiple specialized metrics.

4.2 Hallucination Detection Analysis

An hallucination is an AI generative content that appears plausible but is not
supported by facts [9], it can happen with all LLM. As hallucinations represent
a critical quality issue in generated text, a reliable consistency evaluation metric
should show sensitivity to their presence, demonstrating lower correlation scores
when hallucinations are present in the summary. To evaluate our metric’s robust-
ness against different types of hallucinations, we conducted a systematic analysis

10/29
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Summary evaluation

We can do the same for summary evaluation

Adding some noise in the summaries: metric ↘↘11

SEval-Ex 9

Fig. 2. Examples of hallucinations divide in 3 types: Entity Replacement, Incorrect
Events and Fictitious Details.

using the SummEval dataset. We developed three distinct categories of synthetic
hallucinations to test our framework’s ability to detect these inconsistencies.

Hallucination Types Our goal is to establish that summaries that containin
hallucinations receive lower scoreaccording toording to our metric. To this end,
we designed and implemented three distinct types of hallucinations, illustrated
in Figure 2.

1. Entity Replacement: Systematic substitution of named entities with in-
correct ones while maintaining the overall structure of the summary.

2. Incorrect Events: Modification of the sequence of events by introducing
false temporal or causal relationships. This type of hallucination preserves
the entities, but distorts the narrative flow and factual sequence of events.

3. Fictitious Details: Addition of plausible but unsupported details to the
existing summary. This represents a more subtle form of hallucination in
which the core information remains intact but is embellished with unsup-
ported details.

Dataset Preparation We used the SummEval dataset as our foundation, cre-
ating a balanced dataset of 1,600 samples. The dataset was evenly split into
three equals groups per hallucination type. For each summary, we generated a

Fig. 3. Comparison of average metric scores across different hallucination types, show-
ing the impact on SEval-Ex score.

SEval-Ex 9
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Events and Fictitious Details.
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hallucinations to test our framework’s ability to detect these inconsistencies.

Hallucination Types Our goal is to establish that summaries that containin
hallucinations receive lower scoreaccording toording to our metric. To this end,
we designed and implemented three distinct types of hallucinations, illustrated
in Figure 2.

1. Entity Replacement: Systematic substitution of named entities with in-
correct ones while maintaining the overall structure of the summary.

2. Incorrect Events: Modification of the sequence of events by introducing
false temporal or causal relationships. This type of hallucination preserves
the entities, but distorts the narrative flow and factual sequence of events.

3. Fictitious Details: Addition of plausible but unsupported details to the
existing summary. This represents a more subtle form of hallucination in
which the core information remains intact but is embellished with unsup-
ported details.

Dataset Preparation We used the SummEval dataset as our foundation, cre-
ating a balanced dataset of 1,600 samples. The dataset was evenly split into
three equals groups per hallucination type. For each summary, we generated a

Fig. 3. Comparison of average metric scores across different hallucination types, show-
ing the impact on SEval-Ex score.

11 T. Herserant, V. Guigue; PAKDD 2025
SEval-Ex: A Statement-Level Framework for Explainable Summarization Evaluation
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Conclusion & limitations

LLMs are efficient at extracting entities ⇒ even in new domains

LLMs are efficient at extracting relations

... But LLMs are more efficient at extracting statements !

... And they are even better when limiting the output constraints

The question is:
in which representation space should we work? The input text space, the latent
space, or the output text space? This raises issues of formulation and metrics.

New horizon for information extraction...

... But always keep in mind data contamination
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Optimizing the
faithfulness12

12Duong, S., Bronnec, F. L., Allauzen, A., Guigue, V., Lumbreras, A., Soulier, L., & Gallinari, P.; ICLR 2025
SCOPE: A Self-supervised Framework for Improving Faithfulness in Conditional Text Generation
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The Ingredients of chatGPT

1. More is better! (GPT)

+ more input words [500 ⇒ 2k, 32k, 100k]

+ more dimensions in the word space [500-2k ⇒ 12k]

+ more attention heads [12 ⇒ 96]

+ more blocks/layers [5-12 ⇒ 96]

175 Billion parameters... What does it mean?

1.75 · 1011 ⇒ 300 GB + 100 GB (data storage for
inference) ≈ 400GB

NVidia A100 GPU = 80GB of memory (=20k€)

Cost for (1) training: 4.6 Million €
It's raining cats and dogs

word

representation
dimension

Transformer

block

Transformer

block

...

Attn word

cross-attn

head

nb
transf.
blocks
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The Ingredients of chatGPT

2. Dialogue Tracking

Dialog corpus

GPT

Specific training

Dialog follow-up
Coreference resolution
Way of speaking

Very clean data Data generated/validated/ranked by humans
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The Ingredients of chatGPT

3. Fine-tuning on different (±) complex reasoning tasks

Scaling Instruction-Finetuned Language Models
Hyung Won Chung� Le Hou� Shayne Longpre� Barret Zoph† Yi Tay†

William Fedus† Yunxuan Li Xuezhi Wang Mostafa Dehghani Siddhartha Brahma
Albert Webson Shixiang Shane Gu Zhuyun Dai Mirac Suzgun Xinyun Chen

Aakanksha Chowdhery Alex Castro-Ros Marie Pellat Kevin Robinson
Dasha Valter Sharan Narang Gaurav Mishra Adams Yu Vincent Zhao

Yanping Huang Andrew Dai Hongkun Yu Slav Petrov Ed H. Chi
Je� Dean Jacob Devlin Adam Roberts Denny Zhou Quoc V. Le

Jason Wei⇤

Google

Abstract

Finetuning language models on a collection of datasets phrased as instructions has been shown to improve
model performance and generalization to unseen tasks. In this paper we explore instruction finetuning
with a particular focus on (1) scaling the number of tasks, (2) scaling the model size, and (3) finetuning on
chain-of-thought data. We find that instruction finetuning with the above aspects dramatically improves
performance on a variety of model classes (PaLM, T5, U-PaLM), prompting setups (zero-shot, few-shot, CoT),
and evaluation benchmarks (MMLU, BBH, TyDiQA, MGSM, open-ended generation, RealToxicityPrompts).
For instance, Flan-PaLM 540B instruction-finetuned on 1.8K tasks outperforms PaLM 540B by a large margin
(+9.4% on average). Flan-PaLM 540B achieves state-of-the-art performance on several benchmarks, such as
75.2% on five-shot MMLU. We also publicly release Flan-T5 checkpoints,1 which achieve strong few-shot
performance even compared to much larger models, such as PaLM 62B. Overall, instruction finetuning is a
general method for improving the performance and usability of pretrained language models.
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Figure 1: We finetune various language models on 1.8K tasks phrased as instructions, and evaluate them on unseen tasks.
We finetune both with and without exemplars (i.e., zero-shot and few-shot) and with and without chain-of-thought,
enabling generalization across a range of evaluation scenarios.

�Equal contribution. Correspondence: lehou@google.com.
†Core contributor.
1Public checkpoints: https://github.com/google-research/t5x/blob/main/docs/models.md#flan-t5-checkpoints.
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The Ingredients of chatGPT

4. Instructions + answer ranking

Question?

 A1
 A2

 A3

 A10

...

PPO

Question

 A1

 A2

 A3

 A10

Score
10

Score
prediction

 A1

6

9

1

Question?

GPT

 A1
 A2

 A3

 A10

...

Multiple
generation

PPO

Scoring

Reinforcement
learning

Database created by humans

Response improvement

... Also a way to avoid critical
topics = censorship

Training language models to follow instructions with human feedback, Ouyang et al., 2022 15/29
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Steps & Performance

Massive data ⇒ HQ data (dialogue) ⇒ Tasks ⇒ RLHF
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At the token level13

326 C. Rebuffel et al.

Fig. 3 Our proposed decoder with three branches associated to content (in blue—left), hallucination (in
red—middle) and fluency (in yellow—right). Semi-transparent branches are assigned the weight 0

In this paper, experiments are carried out on RNN-based decoders, weighting
their hidden states. Sect. 4.1 presents the standard DTG encoder-decoder architec-
ture; Sect. 4.2 shows how it can be extended to MBD, together with its peculiarities
and the underlying objectives and assumptions.

4.1 Standard DTG architecture

Neural DTG approaches typically use an encoder-decoder architecture (Wiseman et al.
2017) in which (1) the encoder relies on a RNN to encode each element of the source
table into a fixed-size latent representation h j (elements of the input table are first
embedded into Te N -dimensional vectors, and then fed sequentially to theRNN (Wise-
man et al. 2017)), and (2) the decoder generates a textual description y using a RNN
augmented with attention and copymechanisms (See et al. 2017).Words are generated
in an auto-regressive way. The decoder’s RNN updates its hidden state dt as:

dt :=RNN(dt−1, [yt−1, ct ]) (4)

where yt−1 is the previous word and ct is the context vector obtained through the
attention mechanism. Finally, a word is drawn from the distribution computed via a
copy mechanism (See et al. 2017).

4.2 Controlling hallucinations via amulti-branchmodel

Our objective is to enrich the decoder in order to be able to tune the con-
tent/hallucination ratio during generation, aiming at enabling generation of hallu-
cination-free text when needed. Our key assumption is that the decoder’s generation
is conditioned by three co-dependent factors:

– Content factor constrains the generation to realize only the information included
in the input;

– Hallucinating factor favors lexically richer and more diverse text, but may lead to
hallucinations not grounded by the input;

– Fluency factor2 conditions the generated sentences toward global syntactic cor-
rectness, regardless of the relevance.

2 Wiseman et al. (2018) showed that the explicit modeling of a fluency latent factor improves performance.

123

Require annotation at the token level

Multi-branch decoder ⇒ find the good balance (fluency, faithfulness, ...)

13Rebuffel et al, Data Mining and Knowledge Discovery 2022.
Controlling hallucinations at word level in data-to-text generation.
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Faithfulness opti as a post-processing step15

Calibrating the likelihood in the beam-search procedure
Published as a conference paper at ICLR 2023

Figure 1: Calibrating sequence likelihood improves language generation across model scales. Scores
are averaged ROUGE across 4 datasets (Rm in subsection 3.2)

rely on models’ generalization capability. We refer to this phenomenon as models’ sequence like-
lihood not being calibrated. Prior works (Liu and Liu, 2021; Liu et al., 2022) has shown that the
correlation between sequence probability and its quality for MLE trained models can be low. Liu
et al. (2022) attributed this similarly as the deterministic (one-point) target distribution problem. Ex-
posure bias (Ranzato et al., 2016) further aggravates the problem, as sequence likelihood estimation
is noisier when models’ decoded sequences shift from exposed training data distribution.

Many effective heuristics have been proposed during training and decoding to combat the problem of
uncalibrated sequence likelihood. Label smoothing (Szegedy et al., 2016) prevents the network from
becoming over-confident towards the observed target. This is particularly necessary in language
generation, since the gold target represents just one of many possibilities. It has been observed that
increasing number of decoding candidates past a certain point leads to worse quality for beam search
decoding (Yang et al., 2018; Koehn and Knowles, 2017) and sampling (Adiwardana et al., 2020).
An optimal number of decoding candidates is often determined empirically by decoding models on
the validation set and measuring their performance. Using length normalization is also essential for
beam search decoding (Wu et al., 2016) and sampling (Adiwardana et al., 2020) as models tend
to underestimate sequence likelihood of longer sentences. Repetition is another common failure
mode when models overestimate the probability of repeated sequences (Holtzman et al., 2019). Tri-
gram blocking (Paulus et al., 2018) and nucleus sampling (Holtzman et al., 2020) have been used
to interrupt repeating sequences. These techniques are pervasive and often the default in modern
Transformer libraries (Wolf et al., 2020; Lewis et al., 2019; Raffel et al., 2020; Zhang et al., 2019a).

Since the lack of observed target sequences in MLE training is the root problem, solutions involving
learning with multiple sequence candidates have been proposed to directly address it. They can
be loosely put in three categories: (1) reinforcement learning with sequence-level rewards (Paulus
et al., 2018; Ziegler et al., 2019; Stiennon et al., 2020); (2) two-stage systems that generate and
rerank candidates (Liu and Liu, 2021; Ravaut et al., 2022b; Liu et al., 2022); and (3) multi-task
learning with sequence-level losses (Edunov et al., 2018; Liu et al., 2022). Refer to Related Works
(section 4) for a more comprehensive discussion.

In this paper, we propose to first decode candidates from a fine-tuned model on its own training
dataset, and then continue training the model with a new objective. The new objective aims to
align candidates’ sequence likelihoods according to their similarities to the target sequence in the
model’s latent space. We refer to this process as sequence likelihood calibration (SLiC). Our
approach is related to multi-task learning with sequence-level losses in Liu et al. (2022). However,
we propose a simple yet effective recipe that eliminates decoding heuristics and doesn’t risk directly
optimizing the same metrics that are used to report text generation quality. Unlike reinforcement
learning, it is a one-time offline process that avoids costly online decoding processes. Also, when
compared to two-stage reranking systems, it doesn’t require a separate reranking model that incurs
additional complexity and compute. As depicted in Figure 1, our calibration stage naturally extends
the current paradigm of pretraining and fine-tuning, and we show that calibrated models have strong
improvements over fine-tuned-only models across model sizes.

Our main contributions include:

• Proposed a sequence likelihood calibration (SLiC) stage that consistently improves model qual-
ity, exceeding or matching state-of-the-art results on abstractive summarization, generative
question answering, question generation and data-to-text generation tasks.

• Proposed a novel calibration similarity metric between model decodes and targets measured in
the model’s latent space rather than resorting to external metrics or human feedback.

2

Conditional PMI Decoding14: detecting hazard (entropy) + shifting proba

score (y | y<t , x) = log p (y | y<t , x)− λ · 1{H(p(·|y<t ,x))≥τ} · log p (y | y<t)

14van der Poel et al.; EMNLP 2022
Mutual Information Alleviates Hallucinations in Abstractive Summarization

15Zhao et al.; ICLR 2023
Calibrating Sequence likelihood Improves Conditional Language Generation
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Let’s optimize preferences ! [PPO16]

(Major) assumption

We have hallucinated vs proper sentences in a data-to-text framework

Since instructGPT... We use PPO (Proximal Policy Optimization)

Figure 1: DPO optimizes for human preferences while avoiding reinforcement learning. Existing methods
for fine-tuning language models with human feedback first fit a reward model to a dataset of prompts and
human preferences over pairs of responses, and then use RL to find a policy that maximizes the learned reward.
In contrast, DPO directly optimizes for the policy best satisfying the preferences with a simple classification
objective, fitting an implicit reward model whose corresponding optimal policy can be extracted in closed form.

we will show that the RL-based objective used by existing methods can be optimized exactly with a
simple binary cross-entropy objective, greatly simplifying the preference learning pipeline.

At a high level, existing methods instill the desired behaviors into a language model using curated
sets of human preferences representing the types of behaviors that humans find safe and helpful. This
preference learning stage occurs after an initial stage of large-scale unsupervised pre-training on
a large text dataset. While the most straightforward approach to preference learning is supervised
fine-tuning on human demonstrations of high quality responses, the most successful class of methods
is reinforcement learning from human (or AI) feedback (RLHF/RLAIF; [12, 2]). RLHF methods fit
a reward model to a dataset of human preferences and then use RL to optimize a language model
policy to produce responses assigned high reward without drifting excessively far from the original
model. While RLHF produces models with impressive conversational and coding abilities, the RLHF
pipeline is considerably more complex than supervised learning, involving training multiple LMs and
sampling from the LM policy in the loop of training, incurring significant computational costs.

In this paper, we show how to directly optimize a language model to adhere to human preferences,
without explicit reward modeling or reinforcement learning. We propose Direct Preference Optimiza-
tion (DPO), an algorithm that implicitly optimizes the same objective as existing RLHF algorithms
(reward maximization with a KL-divergence constraint) but is simple to implement and straight-
forward to train. Intuitively, the DPO update increases the relative log probability of preferred to
dispreferred responses, but it incorporates a dynamic, per-example importance weight that prevents
the model degeneration that we find occurs with a naive probability ratio objective. Like existing
algorithms, DPO relies on a theoretical preference model (such as the Bradley-Terry model; [5]) that
measures how well a given reward function aligns with empirical preference data. However, while
existing methods use the preference model to define a preference loss to train a reward model and
then train a policy that optimizes the learned reward model, DPO uses a change of variables to define
the preference loss as a function of the policy directly. Given a dataset of human preferences over
model responses, DPO can therefore optimize a policy using a simple binary cross entropy objective,
producing the optimal policy to an implicit reward function fit to the preference data.

Our main contribution is Direct Preference Optimization (DPO), a simple RL-free algorithm for
training language models from preferences. Our experiments show that DPO is at least as effective
as existing methods, including PPO-based RLHF, for learning from preferences in tasks such as
sentiment modulation, summarization, and dialogue, using language models with up to 6B parameters.

2 Related Work

Self-supervised language models of increasing scale learn to complete some tasks zero-shot [33] or
with few-shot prompts [6, 27, 11]. However, their performance on downstream tasks and alignment
with user intent can be significantly improved by fine-tuning on datasets of instructions and human-
written completions [25, 38, 13, 41]. This ‘instruction-tuning’ procedure enables LLMs to generalize
to instructions outside of the instruction-tuning set and generally increase their usability [13]. Despite
the success of instruction tuning, relative human judgments of response quality are often easier to
collect than expert demonstrations, and thus subsequent works have fine-tuned LLMs with datasets of
human preferences, improving proficiency in translation [20], summarization [40, 51], story-telling
[51], and instruction-following [28, 34]. These methods first optimize a neural network reward
function for compatibility with the dataset of preferences under a preference model such as the

2
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LCLIP(θ) = −E
[
min

(
rt(θ)Ât , clip(rt(θ), 1− ε, 1 + ε)Ât

)]

Reward:

rt(θ) = β log
πθ (yt | y<t)

π0 (yt | y<t)
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Figure 1: DPO optimizes for human preferences while avoiding reinforcement learning. Existing methods
for fine-tuning language models with human feedback first fit a reward model to a dataset of prompts and
human preferences over pairs of responses, and then use RL to find a policy that maximizes the learned reward.
In contrast, DPO directly optimizes for the policy best satisfying the preferences with a simple classification
objective, fitting an implicit reward model whose corresponding optimal policy can be extracted in closed form.

we will show that the RL-based objective used by existing methods can be optimized exactly with a
simple binary cross-entropy objective, greatly simplifying the preference learning pipeline.

At a high level, existing methods instill the desired behaviors into a language model using curated
sets of human preferences representing the types of behaviors that humans find safe and helpful. This
preference learning stage occurs after an initial stage of large-scale unsupervised pre-training on
a large text dataset. While the most straightforward approach to preference learning is supervised
fine-tuning on human demonstrations of high quality responses, the most successful class of methods
is reinforcement learning from human (or AI) feedback (RLHF/RLAIF; [12, 2]). RLHF methods fit
a reward model to a dataset of human preferences and then use RL to optimize a language model
policy to produce responses assigned high reward without drifting excessively far from the original
model. While RLHF produces models with impressive conversational and coding abilities, the RLHF
pipeline is considerably more complex than supervised learning, involving training multiple LMs and
sampling from the LM policy in the loop of training, incurring significant computational costs.

In this paper, we show how to directly optimize a language model to adhere to human preferences,
without explicit reward modeling or reinforcement learning. We propose Direct Preference Optimiza-
tion (DPO), an algorithm that implicitly optimizes the same objective as existing RLHF algorithms
(reward maximization with a KL-divergence constraint) but is simple to implement and straight-
forward to train. Intuitively, the DPO update increases the relative log probability of preferred to
dispreferred responses, but it incorporates a dynamic, per-example importance weight that prevents
the model degeneration that we find occurs with a naive probability ratio objective. Like existing
algorithms, DPO relies on a theoretical preference model (such as the Bradley-Terry model; [5]) that
measures how well a given reward function aligns with empirical preference data. However, while
existing methods use the preference model to define a preference loss to train a reward model and
then train a policy that optimizes the learned reward model, DPO uses a change of variables to define
the preference loss as a function of the policy directly. Given a dataset of human preferences over
model responses, DPO can therefore optimize a policy using a simple binary cross entropy objective,
producing the optimal policy to an implicit reward function fit to the preference data.

Our main contribution is Direct Preference Optimization (DPO), a simple RL-free algorithm for
training language models from preferences. Our experiments show that DPO is at least as effective
as existing methods, including PPO-based RLHF, for learning from preferences in tasks such as
sentiment modulation, summarization, and dialogue, using language models with up to 6B parameters.

2 Related Work

Self-supervised language models of increasing scale learn to complete some tasks zero-shot [33] or
with few-shot prompts [6, 27, 11]. However, their performance on downstream tasks and alignment
with user intent can be significantly improved by fine-tuning on datasets of instructions and human-
written completions [25, 38, 13, 41]. This ‘instruction-tuning’ procedure enables LLMs to generalize
to instructions outside of the instruction-tuning set and generally increase their usability [13]. Despite
the success of instruction tuning, relative human judgments of response quality are often easier to
collect than expert demonstrations, and thus subsequent works have fine-tuned LLMs with datasets of
human preferences, improving proficiency in translation [20], summarization [40, 51], story-telling
[51], and instruction-following [28, 34]. These methods first optimize a neural network reward
function for compatibility with the dataset of preferences under a preference model such as the

2

Same reward:

r̂θ(x , y) = β log
πθ (yt | y<t)

π0 (yt | y<t)

Different cost:

LDPO (πθ; πref) = −E(yt+,yt−,y<t ,)∼D

[
log σ

(
β log

πθ (yt+ | y<t)

π0 (yt+ | y<t)
− β log

πθ (yt− | y<t)

π0 (yt− | y<t)

)]

17Rafailov et al., NeurIPS 2023.
Direct Preference Optimization: Your Language Model is Secretly a Reward Model
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Figure 1: DPO optimizes for human preferences while avoiding reinforcement learning. Existing methods
for fine-tuning language models with human feedback first fit a reward model to a dataset of prompts and
human preferences over pairs of responses, and then use RL to find a policy that maximizes the learned reward.
In contrast, DPO directly optimizes for the policy best satisfying the preferences with a simple classification
objective, fitting an implicit reward model whose corresponding optimal policy can be extracted in closed form.

we will show that the RL-based objective used by existing methods can be optimized exactly with a
simple binary cross-entropy objective, greatly simplifying the preference learning pipeline.

At a high level, existing methods instill the desired behaviors into a language model using curated
sets of human preferences representing the types of behaviors that humans find safe and helpful. This
preference learning stage occurs after an initial stage of large-scale unsupervised pre-training on
a large text dataset. While the most straightforward approach to preference learning is supervised
fine-tuning on human demonstrations of high quality responses, the most successful class of methods
is reinforcement learning from human (or AI) feedback (RLHF/RLAIF; [12, 2]). RLHF methods fit
a reward model to a dataset of human preferences and then use RL to optimize a language model
policy to produce responses assigned high reward without drifting excessively far from the original
model. While RLHF produces models with impressive conversational and coding abilities, the RLHF
pipeline is considerably more complex than supervised learning, involving training multiple LMs and
sampling from the LM policy in the loop of training, incurring significant computational costs.

In this paper, we show how to directly optimize a language model to adhere to human preferences,
without explicit reward modeling or reinforcement learning. We propose Direct Preference Optimiza-
tion (DPO), an algorithm that implicitly optimizes the same objective as existing RLHF algorithms
(reward maximization with a KL-divergence constraint) but is simple to implement and straight-
forward to train. Intuitively, the DPO update increases the relative log probability of preferred to
dispreferred responses, but it incorporates a dynamic, per-example importance weight that prevents
the model degeneration that we find occurs with a naive probability ratio objective. Like existing
algorithms, DPO relies on a theoretical preference model (such as the Bradley-Terry model; [5]) that
measures how well a given reward function aligns with empirical preference data. However, while
existing methods use the preference model to define a preference loss to train a reward model and
then train a policy that optimizes the learned reward model, DPO uses a change of variables to define
the preference loss as a function of the policy directly. Given a dataset of human preferences over
model responses, DPO can therefore optimize a policy using a simple binary cross entropy objective,
producing the optimal policy to an implicit reward function fit to the preference data.

Our main contribution is Direct Preference Optimization (DPO), a simple RL-free algorithm for
training language models from preferences. Our experiments show that DPO is at least as effective
as existing methods, including PPO-based RLHF, for learning from preferences in tasks such as
sentiment modulation, summarization, and dialogue, using language models with up to 6B parameters.

2 Related Work

Self-supervised language models of increasing scale learn to complete some tasks zero-shot [33] or
with few-shot prompts [6, 27, 11]. However, their performance on downstream tasks and alignment
with user intent can be significantly improved by fine-tuning on datasets of instructions and human-
written completions [25, 38, 13, 41]. This ‘instruction-tuning’ procedure enables LLMs to generalize
to instructions outside of the instruction-tuning set and generally increase their usability [13]. Despite
the success of instruction tuning, relative human judgments of response quality are often easier to
collect than expert demonstrations, and thus subsequent works have fine-tuned LLMs with datasets of
human preferences, improving proficiency in translation [20], summarization [40, 51], story-telling
[51], and instruction-following [28, 34]. These methods first optimize a neural network reward
function for compatibility with the dataset of preferences under a preference model such as the

2

2 models to load in memory (πθ, π0)

1 models with gradients (πθ)

Intensive sampling but ∝ π0(yt | y<t) ⇒ enable precomputing

Classical (=stable) likelihood optimization

17Rafailov et al., NeurIPS 2023.
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Fine-tuning Preference-
tuning

Noisy data generation

Training
pipeline

Data
generation

Figure 1: SCOPE training framework. A pre-trained model pLM is first fine-tuned on a subset D1 of D
and produces a model p✓0 . A mixture of pLM and p✓0 is then used to generate a synthetic preference
dataset, which finally serves for preference fine-tuning.

3.1 TRAINING PHASE

Let D = (ci, yi)
N
i=1 be an aligned dataset of context-target pairs used for training.

Fine-tuning. For the first stage, our goal is to get an initial version of a fine-tuned model. We start
from a pre-trained model pLM. To better leverage training samples, we propose for this part to train
pLM only on the first half D1 of the samples of D. We keep the second part D2 of the dataset for the
next step. We denote by p✓0 the model fine-tuned from pLM on D1 using cross-entropy. Given the
strong sample efficiency of recent LLMs, we empirically found that for the datasets used, fine-tuning
on only half of the samples was sufficient to achieve a strong initialization for the subsequent stage,
see Appendix A.3.

Preference-tuning. The second phase involves contrastive learning. Training will be conducted on
D2, the second half of the samples. We augment D2 with artificial unfaithful samples to get a dataset
D2 = {c, yi, y

�
i )}N

i=1. Our complete process to generate these samples is described in Section 3.2.
For each annotated target y, we have a corresponding noisy y� which contains unfaithful patterns.

While other baselines propose to use a custom contrastive loss often based on embeddings similarity,
we propose optimizing the model to prefer y over y� by leveraging the recent framework of preference
tuning (Rafailov et al., 2023), with the following loss:

L✓ = �E(c,y,y�)⇠D2


log �

✓
� log

p✓(y | c)

p✓0(y | c)
� � log

p✓(y
� | c)

p✓0(y
� | c)

◆�
, (1)

where � is the sigmoid function and � is a scalar hyperparameter that quantifies how much p✓ deviates
from p✓0 . Intuitively, minimizing L✓ w.r.t. ✓ amounts to increasing the gap between the likelihood
of generating grounded responses y and non-grounded ones y�. More details about the training
dynamics can be found in Section 6. Additionally, we experimented with an alternative preference
loss in Appendix A.5 and observed similar behavior.

3.2 UNFAITHFUL DATASET GENERATION

In this section, we present our method to generate unfaithful samples. Contrarily to other methods
that rely on external tool, such a named entity recognition or number entity recognition, we propose
an easier and more general method. When a LLM generates ungrounded spans of text, it is often
caused by an interference between the context and the learned statistical patterns acquired during
training. A convincing unfaithful sample generated by a LLM should satisfy at least two desiderata:
(i) attain the same level of fluency than the target LLM, and (ii) being more or less consistent with
the input while containing one or several spans of text not grounded in the input context. An ideal
method would be to run our initial fine-tuned model p✓0 and find among the samples the ones that are
unfaithful. But as discussed in Section 1, accurately detecting unfaithful samples automatically is
a difficult problem. Instead, we propose a simple unsupervised method to simulate the creation of
noisy samples. Our strategy is to "force" the model to leak its internal statistical knowledge in the
generation by adopting a noisy decoding method using two models simultaneously.

• The main model is p✓0 , the initially fine-tuned model on half the dataset. This model generates
samples conditionally to the input context, y ⇠ p✓0(· | c). It is supposed to generate text that is
grounded in the input context, but can still contain inaccuracies due to its shortened training.

4

Lθ = −E(c,y ,y−)∼D2

[
log σ

(
β log

pθ(y | c)
pθ0(y | c) − β log

pθ (y
− | c)

pθ0 (y
− | c)

)]

∇θLDPO (πθ; πref ) =

− βE(x ,yw ,yl )∼D[ σ (r̂θ (x , yl)− r̂θ (x , yw ))︸ ︷︷ ︸
higher weight when reward estimate is wrong

[∇θ log π (yw | x)︸ ︷︷ ︸
increase likelihood of yw

− ∇θ log π (yl | x)︸ ︷︷ ︸
decrease likelihood of yl

]]
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Abstract

Two important tasks at the intersection of
knowledge graphs and natural language pro-
cessing are graph-to-text (G2T) and text-to-
graph (T2G) conversion. Due to the difficulty
and high cost of data collection, the supervised
data available in the two fields are usually on
the magnitude of tens of thousands, for ex-
ample, 18K in the WebNLG 2017 dataset af-
ter preprocessing, which is far fewer than the
millions of data for other tasks such as ma-
chine translation. Consequently, deep learning
models for G2T and T2G suffer largely from
scarce training data. We present CycleGT, an
unsupervised training method that can boot-
strap from fully non-parallel graph and text
data, and iteratively back translate between the
two forms. Experiments on WebNLG datasets
show that our unsupervised model trained on
the same number of data achieves performance
on par with several fully supervised models.
Further experiments on the non-parallel Gen-
Wiki dataset verify that our method performs
the best among unsupervised baselines. This
validates our framework as an effective ap-
proach to overcome the data scarcity problem
in the fields of G2T and T2G.1

1 Introduction

Knowledge graphs are a popular form of knowl-
edge representation and central to many critical nat-
ural language processing (NLP) applications. One
of the most important tasks, graph-to-text (G2T),
aims to produce descriptive text that verbalizes the
graphical data. For example, the knowledge graph
triplet “(Allen Forest, genre, hip hop), (Allen For-
est, birth year, 1981)” can be verbalized as “Allen
Forest, a hip hop musician, was born in 1981.”

⇤Equal contribution.
† Work done during internship at Amazon Shanghai AI

Lab.
1Our code is available at https://github.com/

QipengGuo/CycleGT.
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Figure 1: Given a text corpus, and a graph dataset, and
no parallel (text, graph) pairs, our model CycleGT aims
to jointly learn T2G and G2T in a cycle framework.

This has wide real-world applications, for instance,
when a digital assistant needs to translate some
structured information (e.g., the properties of the
restaurant) to the human user. Another important
task, text-to-graph (T2G), is to extract structures
in the form of knowledge graphs from the text, so
that all entities become nodes, and the relationships
among entities form edges. This can serve many
downstream tasks, such as information retrieval
and reasoning. The two tasks can be seen as a dual
problem, as shown in Figure 1.

However, most previous work has treated G2T
and T2G as two separate supervised learning prob-
lems, for which the data annotation is very expen-
sive. Therefore, both fields face the challenge of
scarce parallel data. All current datasets are of a
much smaller size than what is required to train
the model to human-level performance. For exam-
ple, the benchmark dataset WebNLG 2017 only
has 18K text-graph pairs for training (after pre-
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1174

Table Title: Gabriele Becker
Section Title: International Competitions
Table Description: None

Year Competition Venue Position Event Notes

Representing Germany
1992 World Junior Championships Seoul, South Korea 10th (semis) 100 m 11.83

7th 100 m 11.741993 European Junior Championships San Sebastián, Spain 3rd 4x100 m relay 44.60
12th (semis) 100 m 11.66 (wind: +1.3 m/s)1994 World Junior Championships Lisbon, Portugal 2nd 4x100 m relay 44.78
7th (q-finals) 100 m 11.541995 World Championships Gothenburg, Sweden 3rd 4x100 m relay 43.01

Original Text: After winning the German under-23 100 m title, she was selected to run at the 1995 World Championships
in Athletics both individually and in the relay.
Text after Deletion: she at the 1995 World Championships in both individually and in the relay.
Text After Decontextualization: Gabriele Becker competed at the 1995 World Championships
in both individually and in the relay.
Final Text: Gabriele Becker competed at the 1995 World Championships both individually and in the relay.

Table 1: Example in the TOTTO dataset. The goal of the task is given the table, table metadata (such as the title),
and set of highlighted cells, to produce the final text. Our data annotation process revolves around annotators
iteratively revising the original text to produce the final text.

duces a novel task design and annotation process
to address the above challenges. First, TOTTO

proposes a controlled generation task: given a
Wikipedia table and a set of highlighted cells as
the source x, the goal is to produce a single sen-
tence description y. The highlighted cells identify
portions of potentially large tables that the target
sentence should describe, without specifying an
explicit meaning representation to verbalize.

For dataset construction, to ensure that targets
are natural but also faithful to the source table,
we request annotators to revise existing Wikipedia
candidate sentences into target sentences, instead
of asking them to write new target sentences (Wen
et al., 2015; Gardent et al., 2017a). Table 1 presents
a simple example from TOTTO to illustrate our an-
notation process. The table and Original Text were
obtained from Wikipedia using heuristics that col-
lect pairs of tables x and sentences y that likely
have significant semantic overlap. This method en-
sures that the target sentences are natural, although
they may only be partially related to the table. Next,
we create a clean and controlled generation task by
requesting annotators to highlight a subset of the
table that supports the original sentence and revise
the latter iteratively to produce a final sentence (see
§5). For instance, in Table 1, the annotator has cho-
sen to highlight a set of table cells (in yellow) that
support the original text. They then deleted phrases
from the original text that are not supported by the
table, e.g., After winning the German under-23 100
m title, and replaced the pronoun she with an entity

Gabriele Becker. The resulting final sentence (Fi-
nal Text) serves as a more suitable generation target
than the original sentence. This annotation process
makes our dataset well suited for high-precision
conditional text generation.

Due to the varied nature of Wikipedia tables,
TOTTO covers a significant variety of domains
while containing targets that are completely faith-
ful to the source (see Table 4 and the Appendix for
more complex examples). Our experiments demon-
strate that state-of-the-art neural models struggle
to generate faithful results, despite the high qual-
ity of the training data. These results suggest that
our dataset could serve as a useful benchmark for
controllable data-to-text generation.

2 Related Work

TOTTO differs from existing datasets in both task
design and annotation process as we describe below.
A summary is given in Table 2.

Task Design Most existing table-to-text datasets
are restricted in topic and schema such as WEATH-
ERGOV (Liang et al., 2009), ROBOCUP (Chen
and Mooney, 2008), Rotowire (Wiseman et al.,
2017, basketball), E2E (Novikova et al., 2016,
2017, restaurants), KBGen (Banik et al., 2013, bi-
ology), and Wikibio (Lebret et al., 2016, biogra-
phies). In contrast, TOTTO contains tables with
various schema spanning various topical categories
all over Wikipedia. Moreover, TOTTO takes a
different view of content selection compared to

18Parikh etal. EMNLP 2020. ToTTo: A Controlled Table-To-Text Generation Dataset. 22/29
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FeTaQA18

Figure 1: Examples of FeTaQA instances. Only part of the original table is shown for better visualization.

Dataset Knowledge Source Answer Format Avg # Words
Wikipedia articles Stories, books, movie scripts Online forum texts Wikipedia tables in Answer

SQuAD (Rajpurkar et al., 2016) ✓ Text-span 3.2
HotpotQA (Yang et al., 2018) ✓ Short-form entity 2.2
NarrativeQA (Kociský et al., 2017) ✓ Free-form text 4.7
ELI5 (Fan et al., 2019) ✓ Free-form text 130.6
WikiTableQuestions (Pasupat and Liang, 2015) ✓ Short-form entity 1.7
SequenceQA (Saha et al., 2018) ✓ Short-form entity 1.2
HybridQA (Chen et al., 2020d) ✓ ✓ Short-form entity 2.1

FeTaQA ✓ Free-form text 18.9

Table 1: Comparison of FeTaQA with other QA datasets.

To complement the existing datasets with the
absent QA interactions, we present FeTaQA, a
Free-form Table Question Answering dataset that
includes long, informative, and free-form answers.
FeTaQA reveals the challenging nature of the
table QA task: 1) retrieving multiple entities from
tables based on the query; 2) aggregating and rea-
soning over relations of these entities; and 3)
structuring surface information and inferences into
a coherent answer that is faithful to the table. We
collect question–answer pairs from noteworthy
descriptions of Wikipedia tables that are high
quality sentences rich in structured information
contents. We annotate questions that elicit such
descriptions, and we make efforts to ensure that the
QA interaction is compatible, and question anno-
tations are not contrived. In addition, the FeTaQA
tables cover a diverse set of topics and con-
tain un-normalized text, including numbers, dates,
and phrases. FeTaQA examples are presented in
Figure 1 and differences between FeTaQA and
other QA datasets are described in Table 1.

We formulate generative table question answer-
ing as a Sequence-to-Sequence learning problem.
We propose two benchmark methods and provide
experimental results for them. The first one is an

end-to-end model that integrates query and table
comprehension, reasoning, and language genera-
tion by adapting T5 (Raffel et al., 2020). The other
is a pipeline model that achieves content selec-
tion and surface realization in separate modules
involving TAPAS (Herzig et al., 2020), which is
a recently proposed pre-trained model that jointly
processes text and tabular data for the usage of
semantic parsing.

Through human studies, we evaluate answers
generated by our proposed models as well as the
reference answer based on fluency, correctness,
adequacy (informativeness), and faithfulness. The
results indicate the challenging nature of FeTaQA
and that there is much room for improvement
in QA systems. We make the dataset and code
available online.1

2 Dataset

Here we introduce FeTaQA and describe the pro-
cess and criteria for collecting the tables, ques-
tions, and answers. Some statistics of FeTaQA
are shown in § 2.4.

1https://github.com/Yale-LILY/FeTaQA.
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... But: how to generate convincing unfaithful sample ?

Detecting errors (to correct them) [too hard/costly]
No context : y ∼ pLM(·) [too weak]
With context on the old model y ∼ pθ0(· | c) [too strong]
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• The second model is pLM, the pre-trained counterpart of p✓0 . This model won’t be given access to
the input context and will simply sample from its context-free distribution y ⇠ pLM(·), generating
general patterns that it has learned.

Both distributions are de facto fluent, but used individually might not be enough to teach anything
during preference tuning. pLM samples will obviously not be challenging enough, while p✓0 samples
won’t contain enough hallucination patterns. Instead we propose to combine both during the decoding
process. We generate these noisy samples token by token by sampling mainly from the grounded
p✓0(· | c) and randomly from the non-grounded pLM. This method introduces fluent but non-grounded
artifacts, exhibiting both intrinsic errors, i.e., generated outputs that contradict the data, and extrinsic
hallucinations, i.e., generated outputs that cannot be inferred from the data alone (see Table 18). Refer
to Algorithm 1 for the complete details of the algorithm.

Algorithm 1: noisy_generation(c, pLM, p✓0)

Input :c an input context, pLM the pre-trained model, p✓0 the fine-tuned model on D1.
for token decoding step t > 0 do

1. Sample: ↵t ⇠ Bernoulli(↵) (↵t 2 {0, 1}).
2. Sample:

y�
t ⇠ (1� ↵t)p✓0(· | y�

<t, c) + ↵tpLM(· | y�
<t) (2)

return y�;

The mixture is parameterized by ↵, which tunes the noise level within the samples. ↵ = 0 corresponds
to the fine-tuned model p✓0 and ↵ = 1 corresponds to the unconditional model pLM. This parameter
actually plays an important role: the noisy y� should contain divergences from the context but still
be close enough to the true y to provide a meaningful learning signal. This is a sensible step for
preference learning, as illustrated later in the experiments (Section 6).

Our detailed pipeline is described in Algorithm 2. Existing preference tuning methods usually depend
on offline preference data gathered from various sources and ranked through voting. In contrast,
the originality of our approach lies in its ability to automatically generate unfaithful responses,
simulating potential hallucinations from the model’s internal state without requiring supervision. This
distinguishes it from traditional preference training, which typically involves human intervention.

Algorithm 2: SCOPE (Self-supervised Context Preference).
Input :D the training data and pLM the pre-trained model.

// Split the train data
D1, D2  Split D into two halves

// 1. Initial fine-tuning
p✓0  Fine-tune pLM on D1

// 2. Noisy generation
eD2  {}
for (c, y) in D2 do

y�  noisy_generation(c, pLM, p✓0)

Append (c, y, y�) to eD2

// 3. Preference fine-tuning by optimizing Equation (1)

p✓  Preference fine-tune p✓0 over eD2, using y as the preferred label and y� as the negative example

return p✓;

4 EXPERIMENTS

4.1 TASKS AND DATASETS

We evaluate our method SCOPE on a total of 6 datasets, spanning multiple domains and difficulties,
where generating grounded context is a crucial requirement. We first run experiments on four data-
to-text generation datasets. ToTTo (Parikh et al., 2020) is an English dataset with Wikipedia tables
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↵ Noisy generation

0.0 Daniel Henry Chamberlain was the 76th governor of South Carolina in 1874.
0.1 Daniel Henry Chamberlain was the 76th Governor of South Carolina and served from

1874. He was the first governor elected by popular vote.
0.2 Daniel Henry Chamberlain was the 19th and final Governor of South Carolina, serving

from 1874 until 1876.
0.3 Daniel P. Chamberlain was elected as governor in 1854.
0.4 In 1876, the first woman elected as governor in the United States was Daniel Henry

Chamberlain.
0.5 Daniel Henry Chamberlain, Jr. served as a U.S. Representative and served as the 7th

Governor of South Carolina from December 18, 1974. He was a member of the Demo-
cratic Party.

0.6 Tags: Daniel Henry Chamberlain was born in 1887, and died on December 1, 1962. He
was the son of Daniel Henry Chamberlain, who served as a politician and lawyer in
South Carolina.

0.7 Danielle Hatcher Chamberlain served as a U.S. Senator from 1843-1847 and was
elected as a Governor of Mississippi in 1847. She was elected again for another term in
1870.

0.8 Oshima-yukihisa-kōki was discovered by Japanese amateur astronomer Atsushi
Sugiyama on October 25, 1995 at the Okayama Astrophysical Observatory.

0.9 Heteromastix piceaformis piceaformis (B) species group (Heteromastix) complex (B).
Table 18: At low levels of noise, the noisy sample is close to the supervised fine-tuned model, being
overall faithful to the context while adding unsupported information (extrinsic error). As ↵ increases,
the influence of the unconditional model causes the sample to increasingly contradict the context
(intrinsic error), eventually making it entirely irrelevant.

descriptions have one or several faithfulness issues, they should both be considered unfaithful and
rated as ’Tie’. The following instructions were provided to the annotators:

Instructions for Faithfulness Evaluation

Your task is to assess which text description is more faithful to the corresponding
table. In this context, a text is considered faithful if all information it contains is
directly supported by the content of the table.

• If the description introduces any unsupported or incorrect information, it
should be rated as unfaithful.

• If both descriptions contain one or more faithfulness issues, rate them as a
Tie.

To guide your evaluation:

• Carefully compare each detail in the description with the table to ensure
accuracy.

• A description should not distort, omit, or add information that is not present
in the table.

• If you notice even a single instance of unsupported information in a descrip-
tion, it should be rated as unfaithful.

• If both descriptions have one or several faithfulness issues, they should both
be considered unfaithful and rated as ’Tie’.

Please choose between the following options for each comparison:

• Text A is more faithful

• Text B is more faithful
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Fine-tuning Preference-
tuning

Noisy data generation

Training
pipeline

Data
generation

Figure 1: SCOPE training framework. A pre-trained model pLM is first fine-tuned on a subset D1 of D
and produces a model p✓0 . A mixture of pLM and p✓0 is then used to generate a synthetic preference
dataset, which finally serves for preference fine-tuning.

3.1 TRAINING PHASE

Let D = (ci, yi)
N
i=1 be an aligned dataset of context-target pairs used for training.

Fine-tuning. For the first stage, our goal is to get an initial version of a fine-tuned model. We start
from a pre-trained model pLM. To better leverage training samples, we propose for this part to train
pLM only on the first half D1 of the samples of D. We keep the second part D2 of the dataset for the
next step. We denote by p✓0 the model fine-tuned from pLM on D1 using cross-entropy. Given the
strong sample efficiency of recent LLMs, we empirically found that for the datasets used, fine-tuning
on only half of the samples was sufficient to achieve a strong initialization for the subsequent stage,
see Appendix A.3.

Preference-tuning. The second phase involves contrastive learning. Training will be conducted on
D2, the second half of the samples. We augment D2 with artificial unfaithful samples to get a dataset
D2 = {c, yi, y

�
i )}N

i=1. Our complete process to generate these samples is described in Section 3.2.
For each annotated target y, we have a corresponding noisy y� which contains unfaithful patterns.

While other baselines propose to use a custom contrastive loss often based on embeddings similarity,
we propose optimizing the model to prefer y over y� by leveraging the recent framework of preference
tuning (Rafailov et al., 2023), with the following loss:

L✓ = �E(c,y,y�)⇠D2


log �

✓
� log

p✓(y | c)

p✓0(y | c)
� � log

p✓(y
� | c)

p✓0(y
� | c)

◆�
, (1)

where � is the sigmoid function and � is a scalar hyperparameter that quantifies how much p✓ deviates
from p✓0 . Intuitively, minimizing L✓ w.r.t. ✓ amounts to increasing the gap between the likelihood
of generating grounded responses y and non-grounded ones y�. More details about the training
dynamics can be found in Section 6. Additionally, we experimented with an alternative preference
loss in Appendix A.5 and observed similar behavior.

3.2 UNFAITHFUL DATASET GENERATION

In this section, we present our method to generate unfaithful samples. Contrarily to other methods
that rely on external tool, such a named entity recognition or number entity recognition, we propose
an easier and more general method. When a LLM generates ungrounded spans of text, it is often
caused by an interference between the context and the learned statistical patterns acquired during
training. A convincing unfaithful sample generated by a LLM should satisfy at least two desiderata:
(i) attain the same level of fluency than the target LLM, and (ii) being more or less consistent with
the input while containing one or several spans of text not grounded in the input context. An ideal
method would be to run our initial fine-tuned model p✓0 and find among the samples the ones that are
unfaithful. But as discussed in Section 1, accurately detecting unfaithful samples automatically is
a difficult problem. Instead, we propose a simple unsupervised method to simulate the creation of
noisy samples. Our strategy is to "force" the model to leak its internal statistical knowledge in the
generation by adopting a noisy decoding method using two models simultaneously.

• The main model is p✓0 , the initially fine-tuned model on half the dataset. This model generates
samples conditionally to the input context, y ⇠ p✓0(· | c). It is supposed to generate text that is
grounded in the input context, but can still contain inaccuracies due to its shortened training.

4
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• The second model is pLM, the pre-trained counterpart of p✓0 . This model won’t be given access to
the input context and will simply sample from its context-free distribution y ⇠ pLM(·), generating
general patterns that it has learned.

Both distributions are de facto fluent, but used individually might not be enough to teach anything
during preference tuning. pLM samples will obviously not be challenging enough, while p✓0 samples
won’t contain enough hallucination patterns. Instead we propose to combine both during the decoding
process. We generate these noisy samples token by token by sampling mainly from the grounded
p✓0(· | c) and randomly from the non-grounded pLM. This method introduces fluent but non-grounded
artifacts, exhibiting both intrinsic errors, i.e., generated outputs that contradict the data, and extrinsic
hallucinations, i.e., generated outputs that cannot be inferred from the data alone (see Table 18). Refer
to Algorithm 1 for the complete details of the algorithm.

Algorithm 1: noisy_generation(c, pLM, p✓0)

Input :c an input context, pLM the pre-trained model, p✓0 the fine-tuned model on D1.
for token decoding step t > 0 do

1. Sample: ↵t ⇠ Bernoulli(↵) (↵t 2 {0, 1}).
2. Sample:

y�
t ⇠ (1� ↵t)p✓0(· | y�

<t, c) + ↵tpLM(· | y�
<t) (2)

return y�;

The mixture is parameterized by ↵, which tunes the noise level within the samples. ↵ = 0 corresponds
to the fine-tuned model p✓0 and ↵ = 1 corresponds to the unconditional model pLM. This parameter
actually plays an important role: the noisy y� should contain divergences from the context but still
be close enough to the true y to provide a meaningful learning signal. This is a sensible step for
preference learning, as illustrated later in the experiments (Section 6).

Our detailed pipeline is described in Algorithm 2. Existing preference tuning methods usually depend
on offline preference data gathered from various sources and ranked through voting. In contrast,
the originality of our approach lies in its ability to automatically generate unfaithful responses,
simulating potential hallucinations from the model’s internal state without requiring supervision. This
distinguishes it from traditional preference training, which typically involves human intervention.

Algorithm 2: SCOPE (Self-supervised Context Preference).
Input :D the training data and pLM the pre-trained model.

// Split the train data
D1, D2  Split D into two halves

// 1. Initial fine-tuning
p✓0  Fine-tune pLM on D1

// 2. Noisy generation
eD2  {}
for (c, y) in D2 do

y�  noisy_generation(c, pLM, p✓0)

Append (c, y, y�) to eD2

// 3. Preference fine-tuning by optimizing Equation (1)

p✓  Preference fine-tune p✓0 over eD2, using y as the preferred label and y� as the negative example

return p✓;

4 EXPERIMENTS

4.1 TASKS AND DATASETS

We evaluate our method SCOPE on a total of 6 datasets, spanning multiple domains and difficulties,
where generating grounded context is a crucial requirement. We first run experiments on four data-
to-text generation datasets. ToTTo (Parikh et al., 2020) is an English dataset with Wikipedia tables
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ToTTo E2E FeTaQA WebNLG
NLI PAR BLEU NLI PAR BLEU NLI PAR BLEU NLI PAR BLEU

LLAMA2-7B

SFT 46.42 80.55 - 92.62 86.41 41.81 39.06 78.68 39.72 79.36 79.19 48.37
CAD 46.33 80.59 - 92.74 86.35 41.32 39.67 78.93 39.64 79.62 79.45 48.95
CRITIC 46.22 80.66 - 92.70 86.45 41.82 39.10 78.67 39.94 79.47 79.51 48.83
PMI 46.36 80.51 - 92.66 86.42 41.78 39.23 78.52 39.71 79.54 79.30 48.45
CLIFF 46.69 80.77 - 92.64 86.47 41.78 39.67 79.11 40.48 79.92 79.31 47.99
SCOPE (ours) 51.88⇤ 86.11⇤ - 94.64⇤ 87.21⇤ 38.70 42.97⇤ 83.40⇤ 38.96 83.42⇤ 85.95⇤ 48.16

LLAMA2-13B

SFT 46.56 80.47 - 93.39 86.42 41.26 39.66 79.22 40.72 80.07 78.14 48.77
CAD 46.68 80.66 - 93.25 86.41 41.24 39.56 79.21 40.65 82.55 79.06 49.78
CRITIC 46.59 80.73 - 93.58 86.44 41.17 39.82 79.51 40.37 80.24 78.37 49.10
PMI 46.55 80.46 - 93.43 86.35 41.23 40.03 79.32 40.77 80.02 78.38 49.02
CLIFF 47.04 80.68 - 92.42 86.47 41.49 38.85 79.06 41.05 80.15 79.09 48.16
SCOPE (ours) 54.27⇤ 86.58⇤ - 91.61 87.37⇤ 39.09 41.91 83.30⇤ 36.77 84.44⇤ 87.26⇤ 48.02

MISTRAL-7B

SFT 46.70 80.79 - 92.64 85.88 41.16 39.90 79.31 41.47 84.71 80.58 50.85
CAD 46.40 80.37 - 92.28 85.80 40.65 39.99 79.61 41.18 85.26 80.55 50.72
CRITIC 46.72 80.75 - 92.80 85.97 40.00 39.55 79.50 41.43 84.62 80.71 50.94
PMI 46.48 80.33 - 92.80 85.88 41.18 39.80 79.30 41.49 84.86 80.58 50.87
CLIFF 47.30 80.89 - 92.86 85.99 41.23 40.25 79.45 41.88 84.29 80.52 50.57
SCOPE (ours) 53.45⇤ 89.01⇤ - 93.43 87.09⇤ 40.44 42.03 81.49⇤ 40.33 86.39⇤ 80.41 52.20

Table 2: Performance comparison on the test set of ToTTo, E2E, FeTaQA, and WebNLG. Note that
the missing BLEU results are due to the absence of gold references in the test set of ToTTo. ⇤ denotes
faithfulness scores statistically significantly higher than the SFT baseline.

SAMSum XSum PubMed
Align FactCC QEval R-L Align FactCC QEval R-L Align FactCC QEval R-L

LLAMA2-7B

SFT 80.66 78.51 44.83 45.20 56.25 74.63 31.99 34.92 46.89 35.84 34.60 24.58
CAD 81.65 79.37 45.01 45.01 57.58 77.83 32.26 33.73 52.68 43.05 33.65 22.50
CRITIC 81.52 77.66 45.18 44.81 55.80 74.23 32.03 34.15 48.02 37.56 33.71 23.80
PMI 81.03 77.29 44.95 45.15 56.29 74.33 31.99 34.90 48.03 36.34 34.45 23.56
CLIFF 81.30 76.68 44.77 44.72 57.46 74.70 32.23 35.58 45.64 37.56 34.06 23.97
SCOPE 83.67⇤ 81.93 46.65⇤ 42.15 65.10⇤ 89.05⇤ 38.76⇤ 27.58 58.17⇤ 58.63⇤ 38.53⇤ 24.00
LLAMA2-13B

SFT 81.59 78.63 44.10 44.60 56.53 75.75 31.72 36.14 47.51 38.93 34.83 24.02
CAD 81.35 80.59 44.21 43.43 57.22 77.45 31.99 35.89 52.81 47.79 34.67 23.17
CRITIC 81.14 78.14 44.40 42.88 56.53 75.16 31.81 35.97 49.06 40.46 34.63 22.35
PMI 81.82 78.14 44.04 44.75 56.56 75.47 31.75 36.20 50.87 36.79 34.82 23.32
CLIFF 81.61 76.80 44.96 44.19 56.52 75.27 31.67 36.10 45.60 40.76 34.30 24.39
SCOPE 84.20⇤ 81.69 46.45⇤ 44.98 66.03⇤ 84.06⇤ 37.17⇤ 31.59 58.68⇤ 61.22⇤ 39.10⇤ 23.85

MISTRAL-7B

SFT 82.59 75.75 31.25 44.20 57.20 75.76 31.25 36.25 43.60 35.10 33.32 25.07
CAD 83.10 79.37 45.52 43.98 57.31 78.55 31.32 35.24 45.36 42.75 31.72 23.63
CRITIC 82.76 79.24 45.63 44.07 57.65 74.67 31.81 33.68 46.80 38.78 33.13 23.55
PMI 82.45 80.46 45.49 44.17 57.47 76.76 30.83 36.17 44.08 37.86 32.59 24.37
CLIFF 82.50 79.24 45.60 44.30 58.20 75.33 31.83 37.14 45.90 40.61 34.18 25.50
SCOPE 83.70⇤ 80.59 46.21⇤ 42.72 62.17⇤ 84.36⇤ 36.33⇤ 24.61 55.37⇤ 48.55⇤ 37.01⇤ 24.03

Table 3: Performance comparison on the test set of SAMSum, XSum and PubMed. ⇤ denotes
faithfulness scores statistically significantly higher than the SFT baseline.

Baselines present mixed results on faithfulness metrics. Summarization-focused baselines (CAD,
PMI, CLIFF) show an overall increase in AlignScore on SAMSum, XSum and PubMed (Table 3).
However, the improvements on XSum remain marginal compared to SCOPE’s results. For data-
to-text generation, all baselines show minimal to no faithfulness improvement over SFT (Table 2).
Depending on the methods, we identified two reasons that could explain these mixed results. First,
CLIFF, CRITIC, and PMI were originally designed for smaller encoder-decoder models. We suspect
that differences in architecture and the number of parameters in larger, more recent LLMs may limit
their effectiveness. Secondly, CAD, PMI, CLIFF were mainly designed for general summarization
tasks, we suspect that for data-to-text generation, which require further adaptation, these methods
may fall short.
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ToTTo E2E FeTaQA WebNLG
NLI PAR BLEU NLI PAR BLEU NLI PAR BLEU NLI PAR BLEU

LLAMA2-7B

SFT 46.42 80.55 - 92.62 86.41 41.81 39.06 78.68 39.72 79.36 79.19 48.37
CAD 46.33 80.59 - 92.74 86.35 41.32 39.67 78.93 39.64 79.62 79.45 48.95
CRITIC 46.22 80.66 - 92.70 86.45 41.82 39.10 78.67 39.94 79.47 79.51 48.83
PMI 46.36 80.51 - 92.66 86.42 41.78 39.23 78.52 39.71 79.54 79.30 48.45
CLIFF 46.69 80.77 - 92.64 86.47 41.78 39.67 79.11 40.48 79.92 79.31 47.99
SCOPE (ours) 51.88⇤ 86.11⇤ - 94.64⇤ 87.21⇤ 38.70 42.97⇤ 83.40⇤ 38.96 83.42⇤ 85.95⇤ 48.16

LLAMA2-13B

SFT 46.56 80.47 - 93.39 86.42 41.26 39.66 79.22 40.72 80.07 78.14 48.77
CAD 46.68 80.66 - 93.25 86.41 41.24 39.56 79.21 40.65 82.55 79.06 49.78
CRITIC 46.59 80.73 - 93.58 86.44 41.17 39.82 79.51 40.37 80.24 78.37 49.10
PMI 46.55 80.46 - 93.43 86.35 41.23 40.03 79.32 40.77 80.02 78.38 49.02
CLIFF 47.04 80.68 - 92.42 86.47 41.49 38.85 79.06 41.05 80.15 79.09 48.16
SCOPE (ours) 54.27⇤ 86.58⇤ - 91.61 87.37⇤ 39.09 41.91 83.30⇤ 36.77 84.44⇤ 87.26⇤ 48.02

MISTRAL-7B

SFT 46.70 80.79 - 92.64 85.88 41.16 39.90 79.31 41.47 84.71 80.58 50.85
CAD 46.40 80.37 - 92.28 85.80 40.65 39.99 79.61 41.18 85.26 80.55 50.72
CRITIC 46.72 80.75 - 92.80 85.97 40.00 39.55 79.50 41.43 84.62 80.71 50.94
PMI 46.48 80.33 - 92.80 85.88 41.18 39.80 79.30 41.49 84.86 80.58 50.87
CLIFF 47.30 80.89 - 92.86 85.99 41.23 40.25 79.45 41.88 84.29 80.52 50.57
SCOPE (ours) 53.45⇤ 89.01⇤ - 93.43 87.09⇤ 40.44 42.03 81.49⇤ 40.33 86.39⇤ 80.41 52.20

Table 2: Performance comparison on the test set of ToTTo, E2E, FeTaQA, and WebNLG. Note that
the missing BLEU results are due to the absence of gold references in the test set of ToTTo. ⇤ denotes
faithfulness scores statistically significantly higher than the SFT baseline.

SAMSum XSum PubMed
Align FactCC QEval R-L Align FactCC QEval R-L Align FactCC QEval R-L

LLAMA2-7B

SFT 80.66 78.51 44.83 45.20 56.25 74.63 31.99 34.92 46.89 35.84 34.60 24.58
CAD 81.65 79.37 45.01 45.01 57.58 77.83 32.26 33.73 52.68 43.05 33.65 22.50
CRITIC 81.52 77.66 45.18 44.81 55.80 74.23 32.03 34.15 48.02 37.56 33.71 23.80
PMI 81.03 77.29 44.95 45.15 56.29 74.33 31.99 34.90 48.03 36.34 34.45 23.56
CLIFF 81.30 76.68 44.77 44.72 57.46 74.70 32.23 35.58 45.64 37.56 34.06 23.97
SCOPE 83.67⇤ 81.93 46.65⇤ 42.15 65.10⇤ 89.05⇤ 38.76⇤ 27.58 58.17⇤ 58.63⇤ 38.53⇤ 24.00
LLAMA2-13B

SFT 81.59 78.63 44.10 44.60 56.53 75.75 31.72 36.14 47.51 38.93 34.83 24.02
CAD 81.35 80.59 44.21 43.43 57.22 77.45 31.99 35.89 52.81 47.79 34.67 23.17
CRITIC 81.14 78.14 44.40 42.88 56.53 75.16 31.81 35.97 49.06 40.46 34.63 22.35
PMI 81.82 78.14 44.04 44.75 56.56 75.47 31.75 36.20 50.87 36.79 34.82 23.32
CLIFF 81.61 76.80 44.96 44.19 56.52 75.27 31.67 36.10 45.60 40.76 34.30 24.39
SCOPE 84.20⇤ 81.69 46.45⇤ 44.98 66.03⇤ 84.06⇤ 37.17⇤ 31.59 58.68⇤ 61.22⇤ 39.10⇤ 23.85

MISTRAL-7B

SFT 82.59 75.75 31.25 44.20 57.20 75.76 31.25 36.25 43.60 35.10 33.32 25.07
CAD 83.10 79.37 45.52 43.98 57.31 78.55 31.32 35.24 45.36 42.75 31.72 23.63
CRITIC 82.76 79.24 45.63 44.07 57.65 74.67 31.81 33.68 46.80 38.78 33.13 23.55
PMI 82.45 80.46 45.49 44.17 57.47 76.76 30.83 36.17 44.08 37.86 32.59 24.37
CLIFF 82.50 79.24 45.60 44.30 58.20 75.33 31.83 37.14 45.90 40.61 34.18 25.50
SCOPE 83.70⇤ 80.59 46.21⇤ 42.72 62.17⇤ 84.36⇤ 36.33⇤ 24.61 55.37⇤ 48.55⇤ 37.01⇤ 24.03

Table 3: Performance comparison on the test set of SAMSum, XSum and PubMed. ⇤ denotes
faithfulness scores statistically significantly higher than the SFT baseline.

Baselines present mixed results on faithfulness metrics. Summarization-focused baselines (CAD,
PMI, CLIFF) show an overall increase in AlignScore on SAMSum, XSum and PubMed (Table 3).
However, the improvements on XSum remain marginal compared to SCOPE’s results. For data-
to-text generation, all baselines show minimal to no faithfulness improvement over SFT (Table 2).
Depending on the methods, we identified two reasons that could explain these mixed results. First,
CLIFF, CRITIC, and PMI were originally designed for smaller encoder-decoder models. We suspect
that differences in architecture and the number of parameters in larger, more recent LLMs may limit
their effectiveness. Secondly, CAD, PMI, CLIFF were mainly designed for general summarization
tasks, we suspect that for data-to-text generation, which require further adaptation, these methods
may fall short.
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Results

GPT4 as a judge
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GPT4-as-a-judge evaluation. To further assess their performances, all methods applied to LLAMA-
2-7B were compared to standard fine-tuning, with GPT-4 used as the evaluator. Results are presented
in Tables 4 and 5. Across all datasets, SCOPE consistently shows a much higher win rate than
other methods, confirming its efficiency in improving faithfulness. For the baselines, especially in
data-to-text generation tasks, we observe a noticeable high tie rate. This indicates that a significant
proportion of the samples are considered equivalent in quality to the standard fine-tuning samples.
Consequently, it suggests that these methods have not adequately addressed the faithfulness issues
related to fine-tuning.

ToTTo E2E FeTaQA WebNLG
Win% Tie% Loss% Win% Tie% Loss% Win% Tie% Loss% Win% Tie% Loss%

CAD 3,47 93,11 3,42 1,79 92,20 6,01 7,59 86,78 5,62 8,70 82,1 9,20
PMI 2,82 94,33 2,85 0.49 99.02 0.49 5.90 86.01 8.10 7.98 84.26 7.76
CRITIC 4.37 91.5 4.13 0,87 98.00 1,14 5,85 89,49 4,67 6,90 86,25 6,85
CLIFF 14.57 72.37 13.06 3.14 92.15 4.71 20.92 58.66 20.42 14.90 67.96 17.14
SCOPE (ours) 35.03⇤ 47.26 17.71 11.04⇤ 84.79 4.17 29.96 45.53 24.51 29.85⇤ 55.93 14.22

Table 4: GPT-4 preference results of CAD, PMI, CRITIC, CLIFF and SCOPE versus SFT with LLAMA-
2-7B on ToTTo, E2E, FeTaQA and WebNLG. Results with ⇤ are statistically significantly higher than
all other baselines.

SAMSum XSum PubMed

Win% Tie% Loss% Win% Tie% Loss% Win% Tie% Loss%

CAD 21.73 62.27 16.00 42.98 18.36 38.67 53.82 11.93 34.25
PMI 9.89 80.71 9.40 24.06 52.66 23.27 37.31 26.30 36.39
CRITIC 18.93 63.00 18.07 35.50 28.10 36.40 38.84 22.02 39.14
CLIFF 25.89 45.67 28.45 50.63 12.00 37.38 41.74 17.43 40.83
SCOPE (ours) 58.12⇤ 8.42 33.46 61.03⇤ 2.64 36.33 74.50⇤ 22.75 2.75

Table 5: GPT-4 preference results of CAD, PMI, CRITIC, CLIFF and SCOPE versus SFT with LLAMA-
2-7B on SAMSum, XSum and PubMed. Results with ⇤ are statistically significantly higher than all
other baselines.

Win% Tie% Loss%

SFT 15.2 44.8 40.0
SCOPE 40.0 44.8 15.2

Table 6: Human preference results of SCOPE
versus SFT on ToTTo test set with LLAMA-2.

Further validation through human evaluation.
In addition to using automatic faithfulness metrics
and GPT-4 preference judgments, we conduct human
evaluations to comprehensively assess the quality of
SCOPE generations. We distribute different sets of
25 ToTTo samples to 5 annotators, totaling 125 sam-
ples. Each sample includes a table, one generation
from SCOPE and one from SFT, using LLAMA-2-7B.
Annotators are tasked with rating which of the two
descriptions is more faithful to the table. They are asked to put the emphasis on faithfulness exclu-
sively, meaning that although a generation may contain factually correct details, these additions are
deemed less desirable than a generation that strictly relies on the information provided in the table.
Full experimental details are described in Appendix E. The results are presented in Table 6. The
descriptions generated by SCOPE are preferred twice as often as those by the associated SFT. The
results closely match those obtained with GPT4-as-a-judge, further validating the soundness of our
approach. We present some samples of SCOPE and SFT generations in Appendix D.

6 ANALYSIS OF SCOPE

In this section, we propose to analyze the effect of undesired responses generated by our unfaithful
sampling method on the overall performances of SCOPE. By varying the value of ↵ in the noisy
data generation process (Algorithm 1), we can simulate different degrees of hallucinations due to the
influence of pLM. In this analysis, we examine the impact of negative samples on preference learning.

How does the value of ↵ affect the training dynamics? The choice of ↵ is critical. When ↵ is
low, the negative samples are too close to the model’s own approximation of the underlying data
distribution. During the preference-tuning stage, the model struggles to maximize the gap between
the likelihood of the clean and noisy samples while maintaining the high likelihood of the clean
ones. This causes the model to downweight the likelihood of both samples, leading to degeneracies,
see Figure 2a. Conversely, when ↵ is high, the generated noisy samples are barely grounded in
the input context, making it easy to distinguish between y and y� under p✓(· | c). In this case, the
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Qualitative analysis when SCOPE>SFT in GPT4
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Input SFT SCOPE
Joana: wana play some
games?
Sandy: what games?
Joana: maybe dixit?
Joana: or carcassonne?
Sandy: why not?
Joana: ok, I’ll bring them 2 u
Sandy: great :)

Joana will bring Dixit and
Carcassonne to Sandy.

Joana will bring Dixit and
Carcassonne games for
Sandy.

Ana: You sleeping?
Catherine: Not yet.
Ana: Wanna go visit
grandma tomorrow? I miss
her.
Catherine: Yeah that would
be nice :) I’ll call you when
I wake up
Ana: Oki :) sleep well, good
night.
Catherine: Good night, u
too.

Ana and Catherine will visit
grandma tomorrow.

Catherine will call Ana
when she wakes up
tomorrow to visit grandma
tomorrow.

"Ellie: hey, are you at the
university?
Aaliyah: yep
Camille: I’m sick :/
Ellie: shiet....that’s bad
Ellie: Aali, where are we
having our classes now?
Aaliyah: 342 on the second
floor"

Ellie, Aaliyah and Camille
are at the university. They
have their classes in 342 on
the second floor.

Aaliyah is at the university
in 342 on the second floor.
Camille is sick.

Table 23: SAMsum random winning samples. Red highlights facts that are hallucinations. Yellow
highlights facts that are more faithful to the input.

Input SFT SCOPE
1992 Cork Senior Hurling
Championship
Player: Brian Corcoran
Club: Erin’s Own
Tally: 0-44

Erin’s Own’s Brian Corcoran was the
championship’s top scorer with 0-44.

Erin’s Own Brian Corcoran was the 1992
Cork Senior Hurling Championship’s top
scorer with 0-44.

2015–16 Reading F.C.
season
Matches: 7 November 2015
Matches: Cardiff City
Matches: 2–0
Matches: Reading
Matches: Cardiff

On 7 November, Reading lost 2–0 away to
Cardiff City.

Reading lost 2–0 to Cardiff City on 7
November 2015.

United National Party
Candidate: Ranil
Wickremesinghe
%: 48.43%

Ranil Wickremesinghe won the
presidential election with 48.43% of the
vote.

Ranil Wickremesinghe received 48.43% of
the vote.

2018 Monster Energy
NASCAR Cup Series
Race: Big Machine Vodka
400 at the Brickyard
Most laps led: Clint Bowyer
Denny Hamlin
Winning driver: Brad
Keselowski
Manufacturer: Ford

In the Big Machine Vodka 400 at the
Brickyard, Clint Bowyer and Denny
Hamlin led the laps for Brad Keselowski in
Ford.

Brad Keselowski drove Ford to win the Big
Machine Vodka 400 at the Brickyard, Clint
Bowyer and Denny Hamlin led the most
laps.

Table 24: ToTTo random winning samples. Red highlights facts that are hallucinations. Yellow
highlights facts that are more faithful to the input.
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Impact of Hyper-parameters

Regularization:

Lθ = −E(c,y ,y−)∼D2

[
log σ
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β log
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XSum SAMSum

AlignScore Rouge-L AlignScore Rouge-L

LLAMA-2-7B

SFT on D1 56.2 33.8 80.5 43.2
SFT on D 56.4 35.2 82.6 45.2

MISTRAL-7B

SFT on D1 57.3 35.1 81.9 44.7
SFT on D 57.3 36.2 82.5 45.2

Table 12: Results are on the validation sets. AlignScore and Rouge-L for models fine-tuned on half
of the training set of a summarization datasets. Like for data-to-text generation, on average, the score
are slightly lower compared to models trained on the full dataset.

First phase trained on NLI PARENT
25% 49.57 86.08
50% 50.64 86.34
75% 49.07 84.10

Table 13: NLI and PARENT scores on the validation set of ToTTo when varying the proportion used
in the first phase of fine-tuning and using the remaining split for the second phase of preference
tuning.

A.5 PREFERENCE LOSS

We chose to use DPO (Rafailov et al., 2023) for its seminal work and its widespread usage. But our
self-supervised framework has no dependency with DPO and should also work with other preference
tuning approaches. We tested with ORPO (Hong et al., 2024) and observed very similar results to
DPO, see Table 14.

Method NLI PARENT
SFT 46.0 80.2
SCOPE with DPO loss 49.9 84.2
SCOPE with ORPO loss 49.3 85.9

Table 14: Results on the validation set of ToTTo with different preference optimization losses applied
to LLAMA-2-7B.

A.6 ABLATION ON THE VALUE OF � IN PREFERENCE-TUNING STAGE

Table 15 presents faithfulness metrics as we change the value of � in the preference-tuning phase
of SCOPE. In the original DPO paper (Rafailov et al., 2023), authors use a value � = 0.1 which we
found to also work well for SCOPE.

ToTTo XSum

� PARENT NLI ROUGE-L AlignScore

0.05 83.54 48.31 29.51 65.16
0.1 85.39 49.21 30.66 65.37
1 81.98 46.24 33.80 59.30
5 81.04 45.80 33.84 57.45

Table 15: The effect of different � values on performance for ToTTo and XSum tasks.

A.7 SCOPE ON INSTRUCTION-TUNED MODELS

We intentionally focused on a task-specific setup, targeting use cases where specialized models
are most applicable. However, to explore SCOPE’s performance in a general-purpose context, we

20

Same setting as in DPO for β
⇒ Still stable :)
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Figure 2: Preference training dynamics with LLAMA-2-7B as noise level ↵ increases on ToTTo
dataset. Illustration of the three different regimes during preference training. Blue (resp. red) curve
corresponds the log probability of the reference labels (resp. of the synthetic unfaithful samples).
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Figure 3: Evolution of NLI Score and BLEU with ↵ on ToTTo validation set with LLAMA-2-7B.

model learns very little compared to its fine-tuned counterpart, see Figure 2c. Therefore, ↵ should
be chosen to balance the noisy generation between being too similar to the reference texts and too
easy to discriminate. This scenario is illustrated on Figure 2b for ↵ = 0.5. The likelihood of the
references does not decrease, and the likelihood of the noisy samples diverges less abruptly than in
Figure 2c, providing a more effective learning signal.

How does the negative samples construction affect generation quality? For low values of ↵, we
observe noticeable degeneracies, evidenced by text repetitions. This is shown in Figure 3b, where
BLEU scores decrease abruptly with lower values of ↵. As dicussed in Section 5, in the [0.4, 0.6]
interval, the decrease in BLEU appears to be more closely related to the generated outputs diverging
from standard fine-tuning patterns, rather than a noticeable decline in fluency. Regarding optimization
efficiency, the three regimes observed in Figure 2 can also be identified in Figure 3a, that describes
the evolution of the NLI score as a function of ↵. Below a certain level of noise, degeneracies also
impact the NLI score. Increasing ↵ beyond a certain point yields no further improvement, as both
BLEU and NLI scores converge to the results of standard fine-tuning. As a result, searching for ↵
in the interval [0.4, 0.6] seems to yield the best performances. We observe similar patterns in text
summarization tasks, see Appendix B. A quantitative and qualitative analysis of the noisy samples
can be found in Appendix C.

7 CONCLUSION

Faithfulness hallucinations are a common issue in standard fine-tuned LLMs, and existing methods
developed to mitigate these hallucinations yield mixed results with recent LLM models. In contrast,
we demonstrate that employing a two-stage method, distinct from standard fine-tuning, effectively
addresses typical challenges. Our key contributions include the automatic and self-supervised
construction of a preference dataset tailored for the model, along with a framework that enables
preference learning. Notably, our approach, SCOPE, consistently enhances the faithfulness of
generated responses across various data-to-text and summarization tasks, significantly outperforming
existing solutions as assessed by relevant automatic faithfulness metrics, evaluations using GPT-4 and
human judges. We provide an analysis of the main factors contributing to the successful deployment
of this method, illustrating its performance quantitatively and qualitatively with typical samples.
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model learns very little compared to its fine-tuned counterpart, see Figure 2c. Therefore, ↵ should
be chosen to balance the noisy generation between being too similar to the reference texts and too
easy to discriminate. This scenario is illustrated on Figure 2b for ↵ = 0.5. The likelihood of the
references does not decrease, and the likelihood of the noisy samples diverges less abruptly than in
Figure 2c, providing a more effective learning signal.
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observe noticeable degeneracies, evidenced by text repetitions. This is shown in Figure 3b, where
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interval, the decrease in BLEU appears to be more closely related to the generated outputs diverging
from standard fine-tuning patterns, rather than a noticeable decline in fluency. Regarding optimization
efficiency, the three regimes observed in Figure 2 can also be identified in Figure 3a, that describes
the evolution of the NLI score as a function of ↵. Below a certain level of noise, degeneracies also
impact the NLI score. Increasing ↵ beyond a certain point yields no further improvement, as both
BLEU and NLI scores converge to the results of standard fine-tuning. As a result, searching for ↵
in the interval [0.4, 0.6] seems to yield the best performances. We observe similar patterns in text
summarization tasks, see Appendix B. A quantitative and qualitative analysis of the noisy samples
can be found in Appendix C.

7 CONCLUSION

Faithfulness hallucinations are a common issue in standard fine-tuned LLMs, and existing methods
developed to mitigate these hallucinations yield mixed results with recent LLM models. In contrast,
we demonstrate that employing a two-stage method, distinct from standard fine-tuning, effectively
addresses typical challenges. Our key contributions include the automatic and self-supervised
construction of a preference dataset tailored for the model, along with a framework that enables
preference learning. Notably, our approach, SCOPE, consistently enhances the faithfulness of
generated responses across various data-to-text and summarization tasks, significantly outperforming
existing solutions as assessed by relevant automatic faithfulness metrics, evaluations using GPT-4 and
human judges. We provide an analysis of the main factors contributing to the successful deployment
of this method, illustrating its performance quantitatively and qualitatively with typical samples.
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LLMs, reliability & frugality

Is it important to work on faithfulness?

What about a few percentage points if the architecture is intrinsically
unreliable?

What opportunities exist for frugal architectures?

What are the costs of accessing information between a (very) large language
model and an LLM+RAG setup?

If information access becomes critical, can we trust black box LLMs?
(even with RAG)?
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Discussion about Deepseek GRPO
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