LLMS AND FAITHFULNESS FROM EVALUATION TO OPTIMIZATION

UNIVERSITE PARIS-SACLAY

SystemX, May 23th 2025

Vincent Guigue vincent.guigue@agroparistech.fr

AgroParisTech

MIA PARIS-SACL ekinocs

Different uses, different requirements

Different uses, different requirements

Parametric memory vs hallucinations

RAG: Retrieval Augmented Generation

Few parametric memory \Rightarrow Information Extraction

■ (Current) limit on input size (2k then 32k tokens)

 Introduction
 Optimization
 Conclusion

 Different uses, different requirements

A 💶	Introduction 0000	Evaluation	Optimization	Conclusion
	Differents kinds	of hallucinations		

■ factuality *vs* faithfulness ¹

Patient Data (Input):

Age	Sex	Symptoms	Diagnosis	Treatment
45	Male	Persistent cough	Pneumonia	Antibiotics

Output Examples:

Faithful	Factful	Output
No	No	21 y.o. female with a headache due to a migraine is given antibiotics.
No	Yes	45 y.o. male with a cough due to pneumonia is given amoxicillin.
Yes	Yes	45 y.o. male with a cough due to pneumonia is given antibiotics.

Which answer if I ask you: Where is the Eiffel tower? and giving you a document claiming : The Eiffel tower is in Roma

¹ Huang et al. (2025) ACM Transactions on Information Systems A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions.

The only AI system that we are not able to evaluate properly ! \Rightarrow almost a surprise that it works so well

ROUGE Metric:

a chat GPT alternative proposal for LLMs : Limitless Language Mazes

EVALUATION

T. Herserant, V. Guigue; PAKDD 2025 SEval-Ex: A Statement-Level Framework for Explainable Summarization Evaluation A. Razvan, C-E. Simon, F. Caspani, V. Guigue; ICLR 2025, Work. QUESTION <u>Towards Lighter and</u> Robust Evaluation for Retrieval Augmented Generation

BLEU, ROUGE: word/token matching

 Introduction
 Evaluation
 Optimization
 Conclusion

 From lexical to semantic
 Image: Conclusion
 Conclusion
 Conclusion
 Conclusion

BLEU, ROUGE: word/token matchingBertScore [in the latent space]

- BertScore [in the latent space]
- QuestEval [in the textual space]

A 💶 –	Introduction	Evaluation • 0 0 0 0 0	Optimization	Conclusion
	From	lexical to semantic		
	 BLEU BertSo Quest NLI 	, ROUGE: word/token matching core [in the latent space] Eval [in the textual space]		
		Premise: An adult dressed in black holds a stic Hypothesis: An adult is walking away, empty- Label: contradiction Explanation: Holds a stick implies using hand	³ k. handed. s so it is not empty-handed.	
		Premise: A child in a yellow plastic safety swi in pink and coral pants stands behind her. Hypothesis: A young mother is playing with h Label: neutral Explanation: Child does not imply daughter at	ing is laughing as a dark-haired woman her <mark>daughter</mark> in a swing. nd woman does not imply mother.	
		Premise: A man in an orange vest leans over a Hypothesis: A man is touching a truck. Label: entailment Explanation: Man leans over a pickup truck in	pickup truck.	

Introduction	Evaluation •00000	Optimization	Conclusion
From lexical to	o semantic		

- BLEU, ROUGE: word/token matching
- BertScore [in the latent space]
- QuestEval [in the textual space]
- NLI
- LLM as a judge

Task Introduction		Input Context
You will be given one summary written for a news		Anticle: Paul Merson has restarted his row with Andros Townsend after the Tottenham midfielder was brought on with only seven minutes remaining
article. Your task is to rate the summary on one		in his team 's 0-0 draw with Burnley on
		Input Target
Evaluation Criteria		Summary: Paul merson was brought on with only seven minutes remaining in his team 's 0-0 draw with burnley
Coherence (1-5) - the collective quality of all sentences. We align this dimension with the DUC quality question of structure and coherence		Evaluation Form (scores ONLY): - Coherence:
	Auto	► 4
Evaluation Steps	Сот	•
1. Read the news article carefully and identify the main topic and key points.		0.6
 Read the summary and compare it to the news article. Check if the summary covers the main topic and key points of the news article, and if it presents them in a clear and logical order. Assign a score for coherence on a scale of 1 to 		G-Eval 0.2 0 1 2 3 4 5
10, where 1 is the lowest and 5 is the highest based on the Evaluation Criteria.		Weished Summed Summer 2 50

Introduction	Evaluation •00000	Optimization	Conclusion
From lexical to	o semantic		

- BLEU, ROUGE: word/token matching
- BertScore [in the latent space]
- QuestEval [in the textual space]
- NLI
- LLM as a judge
- PARENT

Player	Team	Points
LeBron James	Lakers	30
Kevin Durant	Suns	28

PARENT(y, r) =

 $\frac{2 \cdot \mathsf{Precision} \cdot \mathsf{Recall}}{\mathsf{Precision} + \mathsf{Recall}}$

Generated text (y):

LeBron James scored 30 points for the Lakers.

Reference text (r):

LeBron James scored 30 points for the Lakers, while Kevin Durant added 28 points for the Suns.

Precision = $\sum_{n \in y} p(n) \cdot \text{match}(n, r)$

$$\mathsf{Recall} = \sum_{n \in r} p(n) \cdot \mathsf{match}(n, y)$$

A 💶 –	Introduction		Evaluation • 0 0	000	Optimization	(Conclusion
	From	lexical to	o semanti	c			
	 BLEU, BertSc QuestE NLI LLM as PAREN 	ROUGE: w ore [in the l Eval [in the t s a judge NT	ord/token m atent space] textual space	atching]			
	Entity	F1 :		Extraction (N	ER) / Precision	$+ \text{ recall} \Rightarrow F$	1
	When	Sebastian Thre	un PERSON star	ted working on self	- driving cars at Goo	gle org in	
	2007	DATE , few pe	eople outside of t	he company took hii	m seriously . " I can tel	ll you very	
	senior	CEOs of major	American NORP	car companies w	ould shake my hand a	nd turn away	
	becau	se I was n't wort	h talking to , " sa	d Thrun PERSON	, in an interview with	Recode org	
	earlie	er this week DAT	ED.				

Introduction	Evaluation 0	• • • • • • • • • • • • • • • • • • • •		Optimization	Conclusion
Pretty good re	sults	But at a	cost		

- Black box (BertScore⁴, LLM as a judge⁵)
- Scale problem (BertScore often very high)
- Computational cost of numerous LLM calls (NLI⁶, QuestEval⁷)
- Lack of reliability (PARENT⁸ pairing / scaling;
 Entity extraction : domain shift /n;

Entity extraction : domain shift/partial detection⁹)

⁴Zhang et al. ICLR 2019 BERTScore: Evaluating Text Generation with BERT.

⁵Zheng et al. NeurIPS 2023.

Judging IIm-as-a-judge with mt-bench and chatbot arena.

⁶Bowman et al. EMNLP 2015

A large annotated corpus for learning natural language inference.

⁷Scialom et al. EMNLP 2021. QuestEval: Summarization Asks for Fact-based Evaluation.

⁸Dhingra et al. ACL 2019

Handling Divergent Reference Texts when Evaluating Table-to-Text Generation.

⁹Nan et al. E-ACL 2021.

Entity-level Factual Consistency of Abstractive Text Summarization

 Introduction
 Evaluation
 Optimization
 Conclusion

 Evaluating RAG: Quantifying Retrieval Performance
 Image: Conclusion
 Conclusion
 Conclusion

Contribution¹⁰: making LLM as a judge more interpretable + quantifiable

¹⁰ A. Razvan, C-E. Simon, F. Caspani, V. Guigue; ICLR 2025, Work. QUESTION Towards Lighter and Robust Evaluation for Retrieval Augmented Generation

Evaluation 000000

Optimization

Conclusion

RAG Evaluation results

PIPELINE		Correctness			FAITHFULNESS		
EVALUATOR	PARSING	F1 AUC	ρ	au	WORST	MIDDLE	Best
BOT RECALL	N/A	88.78	56.89	52.89	N/A	N/A	N/A
RAGAS (GPT3.5-TURBO)	N/A	N/A	N/A	N/A	N/A	N/A	0.95
K-PRECISION	N/A	N/A	N/A	N/A	N/A	N/A	0.96
L3 8B 4 BIT	R1	87.44	30.21	28.54	0.74	0.84	0.94
L3 8B 4 BIT	R2	89.62	37.36	36.54	0.78	0.85	0.92
L3 8B 4 BIT	С	90.57	44.41	43.28	0.72	0.89	1.0
L3.1 8B 4 BIT	R1	86.14	36.89	34.34	0.74	0.79	0.84
L3.1 8B 4 BIT	R2	86.47	40.02	37.74	0.78	0.82	0.86
L3.1 8B 4 BIT	С	75.33	30.84	29.50	0.72	0.83	0.94
G2 9B 4 BIT	R1	92.20	52.55	50.21	0.92	0.94	0.96
G2 9B 4 BIT	R2	93.83 ±0.27	$\textbf{62.06} \pm \textbf{1.83}$	60.49 ± 1.54	0.82	0.88	0.94
G2 9B 4 BIT	С	89.05	55.01	52.10	0.82	0.90	0.98
L3 70B 16 BIT	R1	86.42	49.44	45.41	0.94	0.95	0.96
L3 70B 16 BIT	R2	92.72 ± 0.20	63.59 ± 1.51	60.55 ± 1.39	0.94	0.95	0.96
L3 70B 16 BIT	С	77.21	40.52	37.23	0.88	0.91	0.94

Conclusion

Good Answers
Bad Answers

RAG Evaluation results

PIPELINE	Correctness			FAITHFULNESS			
EVALUATOR	PARSING	F1 AUC	ρ	τ	WORST	MIDDLE	Best
BOT RECALL RAGAS (GPT3.5-TURBO) K-PRECISION L3 8B 4 BIT L3 8B 4 BIT	N/A N/A N/A R1 R2	88.78 N/A N/A 87.44 89.62	56.89 N/A N/A 30.21 37.36	52.89 N/A N/A 28.54 36.54	N/A N/A N/A 0.74 0.78	N/A N/A 0.84 0.85	N/A 0.95 0.96 0.94 0.92
L3 8B 4 BIT L3.1 8B 4 BIT L3.1 8B 4 BIT L3.1 8B 4 BIT G2 9B 4 BIT G2 9B 4 BIT	C R1 R2 C R1 R2	90.57 86.14 86.47 75.33 92.20 93.83 ±0.27	$\begin{array}{c} 44.41\\ 36.89\\ 40.02\\ 30.84\\ 52.55\\ \textbf{62.06}\pm \textbf{1.83}\end{array}$	$\begin{array}{r} 43.28\\ 34.34\\ 37.74\\ 29.50\\ 50.21\\ \textbf{60.49} \pm \textbf{1.54}\end{array}$	0.72 0.74 0.78 0.72 0.92 0.82	0.89 0.79 0.82 0.83 0.94 0.88	1.0 0.84 0.86 0.94 0.96 0.94
G2 9B 4 BIT L3 70B 16 BIT L3 70B 16 BIT L3 70B 16 BIT L3 70B 16 BIT	C R1 R2 C	89.05 86.42 92.72 ±0.20 77.21	55.01 49.44 63.59 ±1.51 40.52	52.10 45.41 60.55 ±1.39 37.23	0.82 0.94 0.94 0.88	0.90 0.95 0.95 0.91	0.98 0.96 0.96 0.94

Density of the scores assigned for the good and bad answers

 Introduction
 Evaluation
 Optimization
 Conclusion

 RAG Evaluation results

A nice result measuring the impact on output contraint

- \Rightarrow At the end, we do not transform the original text
- \Rightarrow We split the statements extraction on the summary

Introduction	Evaluation	000000	Optimization	Conclusion
Summary evalu	uation			

We can do the same for summary evaluation

Architecture	Metric	Fluency	Consistency	Coherence	Relevance	Average
GPT4	G-Eval (Best)	0.455	0.507	0.582	0.547	0.523
GPT3	GPTScore	0.403	0.449	0.434	0.381	0.417
-	ROUGE-1	0.115	0.160	0.167	0.326	0.192
n-gram	ROUGE-2	0.159	0.187	0.184	0.290	0.205
	ROUGE-L	0.105	0.115	0.128	0.311	0.165
	BERTScore	0.193	0.110	0.284	0.312	0.225
Embedding based	MOVERScore	0.129	0.157	0.159	0.318	0.191
	BARTScore	0.356	0.382	0.448	0.356	0.385
Τ5	$\mathbf{QuestEval}$	0.228	0.306	0.182	0.268	0,246
	UniEval	0.449	0.446	0.575	0.426	0.474
qwen2.5:72b	SEval-Ex	0.351	0.580	0.264	0.300	0.373

Introduction Evaluation 000000 Optimization Conclusion

We can do the same for summary evaluation Adding some noise in the summaries: metric $\searrow \searrow^{11}$

- 1. Entity Replacement: Systematic substitution of named entities with incorrect ones while maintaining the overall structure of the summary.
- 2. **Incorrect Events**: Modification of the sequence of events by introducing false temporal or causal relationships. This type of hallucination preserves the entities, but distorts the narrative flow and factual sequence of events.
- 3. Fictitious Details: Addition of plausible but unsupported details to the existing summary. This represents a more subtle form of hallucination in which the core information remains intact but is embellished with unsupported details.

¹¹ T. Herserant, V. Guigue; PAKDD 2025

SEval-Ex: A Statement-Level Framework for Explainable Summarization Evaluation

A 💶 –	Introduction	Evaluation 00000	Optimization	Conclusion
	Conclusion & I	limitations		

- LLMs are **efficient** at extracting **entities** ⇒ even in new domains
- LLMs are **efficient** at extracting relations
- ... But LLMs are **more efficient** at extracting statements !
- ... And they are **even better** when limiting the output constraints

The question is:

in which representation space should we work? The input text space, the latent space, or the output text space? This raises issues of formulation and metrics.

- New horizon for information extraction...
- \blacksquare ... But always keep in mind data contamination

Optimizing the faithfulness¹²

Duong, S., Bronnec, F. L., Allauzen, A., Guigue, V., Lumbreras, A., Soulier, L., & Gallinari, P.; ICLR 2025 SCOPE: A Self-supervised Framework for Improving Faithfulness in Conditional Text Generation

	Introduction	Evaluation	Optimization • 0000	000000000000	Conclusi
	The Ingredient	s of chatGPT			
	1. More is better! (GPT	Γ)			
+++++	more input words more dimensions in the more attention heads more blocks/layers	$[500 \Rightarrow 2k,$ word space $[500-5]$	32k, 100k] $2k \Rightarrow 12k$] $[12 \Rightarrow 96]$ $5-12 \Rightarrow 96]$	nb transf. blocks	ısformer k

175 Billion parameters... What does it mean?

- $1.75 \cdot 10^{11} \Rightarrow 300 \text{ GB} + 100 \text{ GB}$ (data storage for inference) $\approx 400 \text{GB}$
- NVidia A100 GPU = 80GB of memory (=20k€)
- Cost for (1) training: 4.6 Million €

Introduction Evaluation Conclusion The Ingredients of chatGPT 2. Dialogue Tracking Specific training Dialog follow-up GPT Coreference resolution Way of speaking

Dialog corpus

Very clean data

Data generated/validated/ranked by humans

Scaling Instruction-Finetuned Language Models, Chung et al., JMLR 2024

Evaluation

Conclusion

The Ingredients of chatGPT

4. Instructions + answer ranking

Response improvement

 Also a way to avoid critical topics = censorship

Training language models to follow instructions with human feedback, Ouyang et al., 2022

A 💶	Introduction	Evaluation	Optimization 000000000000000000000000000000000000	Conclusion
	At the token	level ¹³		

Name	Giuseppe Mariani
Occupation	Art director
Years active	1952 - 1992

Giuseppe Mariani was an Italian art director.

- Require annotation at the token level
- Multi-branch decoder \Rightarrow find the good balance (fluency, faithfulness, ...)

¹³Rebuffel et al, Data Mining and Knowledge Discovery 2022. Controlling hallucinations at word level in data-to-text generation.

Calibrating the likelihood in the beam-search procedure

■ Conditional PMI Decoding¹⁴: detecting hazard (entropy) + shifting proba

$$\operatorname{score}\left(y \mid \mathbf{y}_{< t}, \mathbf{x}\right) = \log p\left(y \mid \mathbf{y}_{< t}, \mathbf{x}\right) - \lambda \cdot \mathbb{1}_{\left\{\operatorname{H}\left(p\left(\cdot \mid \mathbf{y}_{< t}, \mathbf{x}\right)\right) \geq \tau\right\}} \cdot \log p\left(y \mid \mathbf{y}_{< t}\right)$$

¹⁴van der Poel et al.; EMNLP 2022
 Mutual Information Alleviates Hallucinations in Abstractive Summarization
 ¹⁵Zhao et al.; ICLR 2023
 Calibrating Sequence likelihood Improves Conditional Language Generation

(Major) assumption

We have hallucinated vs proper sentences in a data-to-text framework

Since instructGPT... We use PPO (Proximal Policy Optimization)

¹⁶Schulman et al. arXiv 2017. Proximal Policy Optimization Algorithms

Let's optimize preferences ! [PPO¹⁶]

(Major) assumption

We have hallucinated vs proper sentences in a data-to-text framework

Since instructGPT... We use PPO (Proximal Policy Optimization)

¹⁶Schulman et al. arXiv 2017. Proximal Policy Optimization Algorithms

¹⁶Schulman et al. arXiv 2017. Proximal Policy Optimization Algorithms

 Introduction
 Evaluation
 Optimization 00000000
 Conclusion

 Let's optimize preferences !
 [PPO¹⁶]

(Major) assumption

We have hallucinated vs proper sentences in a data-to-text framework

Since instructGPT... We use PPO (Proximal Policy Optimization)

- 4 models to load in memory (π_{θ}, π_0, V)
- **2** models with gradients $(\pi_{\theta}, V/A)$
- Intensive sampling $\propto \pi_{ heta}(y_t \mid y_{< t})$
- Instable procedure (cf regul. terms)

¹⁶Schulman et al. arXiv 2017. Proximal Policy Optimization Algorithms

Introduction Evaluation Conclusion Let's optimize preferences ! [PPO¹⁶] (Major) assumption We have hallucinated vs proper sentences in a data-to-text framework Since instructGPT... We use PPO (Proximal Policy Optimization) (Données humaines) Comparaisons 1 Train Reward Model r 🗄 $L^{\mathsf{CLIP}}(\theta) = -\mathbb{E}\left[\min\left(r_t(\theta)\hat{A}_t, \operatorname{clip}(r_t(\theta), 1-\varepsilon, 1+\varepsilon)\hat{A}_t\right)\right]$ Prompts \rightarrow LLM $(\pi_{\theta}) \rightarrow$ Réponses Reward: Eval avec r o $r_t(\theta) = \beta \log \frac{\pi_{\theta} \left(y_t \mid y_{\le t} \right)}{\pi_0 \left(y_t \mid y_{\le t} \right)}$ Recompense + KL + Avantage PPO update $\pi_{\theta} \leftarrow \pi_{\theta} + \Delta\theta$

¹⁶Schulman et al. arXiv 2017. Proximal Policy Optimization Algorithms

Evaluation

Conclusion

Simplifying the procedure [DPO¹⁷]

Same reward:

$$\hat{r}_{ heta}(x,y) = eta \log rac{\pi_{ heta}\left(y_t \mid y_{< t}
ight)}{\pi_0\left(y_t \mid y_{< t}
ight)}$$

Different cost:

$$\mathcal{L}_{\text{DPO}}\left(\pi_{\theta}; \pi_{\text{ref}}\right) = -\mathbb{E}_{(y_{t+}, y_{t-}, y_{< t},) \sim \mathcal{D}}\left[\log \sigma \left(\beta \log \frac{\pi_{\theta}\left(y_{t+} \mid y_{< t}\right)}{\pi_{0}\left(y_{t+} \mid y_{< t}\right)} - \beta \log \frac{\pi_{\theta}\left(y_{t-} \mid y_{< t}\right)}{\pi_{0}\left(y_{t-} \mid y_{< t}\right)}\right)\right]$$

¹⁷Rafailov et al., NeurIPS 2023.

Direct Preference Optimization: Your Language Model is Secretly a Reward Model

Evaluation

Conclusion

Simplifying the procedure [DPO¹⁷]

- 2 models to load in memory (π_{θ}, π_0)
- 1 models with gradients (π_{θ})
- Intensive sampling but $\propto \pi_0(y_t \mid y_{< t}) \Rightarrow$ enable precomputing
- Classical (=stable) likelihood optimization

Direct Preference Optimization: Your Language Model is Secretly a Reward Model

¹⁷Rafailov et al., NeurIPS 2023.

Evaluation

Conclusion

SCOPE... Data-to-text model updated with DPO!

$$\mathcal{L}_{\theta} = -\mathbb{E}_{(c,y,y^{-})\sim\mathcal{D}_{2}}\left[\log\sigma\left(\beta\log\frac{p_{\theta}(y\mid c)}{p_{\theta_{0}}(y\mid c)} - \beta\log\frac{p_{\theta}(y^{-}\mid c)}{p_{\theta_{0}}(y^{-}\mid c)}\right)\right]$$

 $\nabla_{\theta} \mathcal{L}_{\text{DPO}} \left(\pi_{\theta}; \pi_{\text{ref}} \right) = -\beta \mathbb{E}_{(x, y_w, y_l) \sim \mathcal{D}} \left[\underbrace{\sigma \left(\hat{r}_{\theta} \left(x, y_l \right) - \hat{r}_{\theta} \left(x, y_w \right) \right)}_{\text{higher weight when reward estimate is wrong}} \left[\underbrace{\nabla_{\theta} \log \pi \left(y_w \mid x \right)}_{\text{increase likelihood of } y_w} - \underbrace{\nabla_{\theta} \log \pi \left(y_l \mid x \right)}_{\text{decrease likelihood of } y_l} \right] \right]$

21/29

Let's explore classical dataset to make things clear

WebNLG corpus¹⁸

Text Corpus (No Matched Graph)

¹⁸Gardent, et al. NLG 2017. The WebNLG challenge: Generating text from RDF data.

Introduction	Evaluation	Optimization 000000000000000000000000000000000000	Conclusion
Δ		+ - + - · · + ?	

Are you familiar with data-to-text?

Let's explore classical dataset to make things clear

ToTTo¹⁸

Table Title: Gabriele BeckerSection Title: International CompetitionsTable Description: None

Year	Competition	Venue	Position	Event	Notes	
Repres	Representing Germany					
1992	World Junior Championships	Seoul, South Korea	10th (semis)	100 m	11.83	
1003	European Junior Championships	San Sebastián Spain	7th	100 m	11.74	
1775	European Junior Championships	San Sebastian, Span	3rd	4x100 m relay	44.60	
100/	World Junior Championships	Lisbon Portugal	12th (semis)	100 m	11.66 (wind: +1.3 m/s)	
1774	world Junior Championships	Lisbon, i ortugai	2nd	4x100 m relay	44.78	
1005	World Championships	Gothenburg Sweden	7th (q-finals)	100 m	11.54	
1775	world Championships	Goulenburg, Sweden	3rd	4x100 m relay	43.01	

Original Text: After winning the German under-23 100 m title, she was selected to run at the 1995 World Championships in Athletics both individually and in the relay.

Text after Deletion: she at the 1995 World Championships in both individually and in the relay.

Text After Decontextualization: Gabriele Becker competed at the 1995 World Championships in both individually and in the relay.

Final Text: Gabriele Becker competed at the 1995 World Championships both individually and in the relay.

¹⁸Parikh etal. EMNLP 2020. ToTTo: A Controlled Table-To-Text Generation Dataset.

Evaluation

Are you familiar with data-to-text?

Let's explore classical dataset to make things clear

$FeTaQA^{18}$

(a) Page Title: German submarine U-60 (1939)					
Date	Ship	Nationality	Tonnage (GRT)	Fate	
19 December 1939	City of Kobe	United Kingdom	4,373	Sunk (Mine)	
13 August 1940	Nils Gorthon	Sweden	1,787	Sunk	
31 August 1940	Volendam	Netherlands	15,434	Damaged	
3 September 1940	Ulva	United Kingdom	1,401	Sunk	
Q: How destructive	was the U-60?	A: U-60 san GRT and dam	k three ships for a aged another one	total of 7,561 of 15,434 GRT.	

(c) Page Title: 1964 United States presidential election in Illinois					
Party	Candidate		Votes	%	
Democratic	Lyndon B. Johnson (inc.)		2,796,833	59.47%	
Republican	Barry Goldwater		1,905,946	40.53%	
Write-in			62	0.00%	
Total votes			4,702,841	100.00%	
Q: How did Lyndon B. Johnson fare against his opponent in the Illinois presidential election?		A: Lyndon B. Jo of the vote, a 40	hnson won Illin gainst Barry Go 0.53% of the vot	ois with 59.47% Idwater, with e.	

(b) Page Title: High-deductible health plan					
Year	Minimum deductible (single)	Minimum deductible (family)	Maximum out-of-pocket (single)	Maximum out-of-pocket (family)	
2016	\$1,300	\$2,600	\$6,550	\$13,100	
2017	\$1,300	\$2,600	\$6,550	\$13,100	
2018	\$1,350	\$2,700	\$6,650	\$13,300	

Q: What is the high-deductible health plan's latest maximum yearly out-of-pocket expenses? A: In 2018, a high-deductible health plan's yearly out-of-pocket expenses can't be more than \$6,650 for an individual or \$13,300 for a family.

(d) Page Title: Joshua Jackson					
Year	Title	Role	Notes		
1998-2003	Dawson's Creek	Pacey Witter	124 episodes		
2000	The Simpsons	Jesse Grass	Voice; Episode: "Lisa the Tree Hugger"		
2001	Cubix	Brian	Voice		
Q: Did Joshua star in The	a Jackson ever Simpsons?	A: In 2000, Jo Simpsons, vo Grass in the ep	oshua Jackson starred in The oicing the character of Jesse pisode "Lisa the Tree Hugger".		

¹⁸Nan et al., T-ACL 2022. FeTaQA: Free-form table question answering.

Algorithm 1: noisy_generation $(c, p_{LM}, p_{\theta_0})$

Input: *c* an input context, p_{LM} the pre-trained model, p_{θ_0} the fine-tuned model on \mathcal{D}_1 . for token decoding step t > 0 do

- 1. Sample: $\alpha_t \sim \text{Bernoulli}(\alpha) \ (\alpha_t \in \{0, 1\}).$
- 2. Sample:

$$y_t^- \sim (1 - \alpha_t) p_{\theta_0}(\cdot \mid y_{< t}^-, c) + \alpha_t p_{\text{LM}}(\cdot \mid y_{< t}^-)$$
 (2)

return y^- ;

Evaluation

Create a contrasted samples

[main contribution]

α	Noisy generation
0.0	Daniel Henry Chamberlain was the 76th governor of South Carolina in 1874.
0.1	Daniel Henry Chamberlain was the 76th Governor of South Carolina and served from
	1874. He was the first governor elected by popular vote.
0.2	Daniel Henry Chamberlain was the 19th and final Governor of South Carolina, serving
	from 1874 <mark>until 1876</mark> .
0.3	Daniel P. Chamberlain was elected as governor in 1854.
0.4	In 1876, the first woman elected as governor in the United States was Daniel Henry
	Chamberlain.
0.5	Daniel Henry Chamberlain, Jr. served as a U.S. Representative and served as the 7th
	Governor of South Carolina from December 18, 1974. He was a member of the Demo-
	cratic Party.
0.6	Tags: Daniel Henry Chamberlain was born in 1887, and died on December 1, 1962. He
	was the son of Daniel Henry Chamberlain, who served as a politician and lawyer in
	South Carolina.
0.7	Danielle Hatcher Chamberlain served as a U.S. Senator from 1843-1847 and was
	elected as a Governor of Mississippi in 1847. She was elected again for another term in
	<mark>1870</mark> .
0.8	Oshima-yukihisa-kōki was discovered by Japanese amateur astronomer Atsushi
	Sugiyama on October 25, 1995 at the Okayama Astrophysical Observatory.
0.9	Heteromastix piceaformis piceaformis (B) species group (Heteromastix) complex (B).

Table 18: At low levels of noise, the noisy sample is close to the supervised fine-tuned model, being overall faithful to the context while adding unsupported information (extrinsic error). As α increases, the influence of the unconditional model causes the sample to increasingly contradict the context (intrinsic error), eventually making it entirely irrelevant.

Noisy data generation

 $\mathcal{D}_2 = \{(x,y,y_-)\}$

Algorithm 2: SCOPE (Self-supervised Context Preference).

 $p_{
m LM}$

Input : \mathcal{D} the training data and p_{LM} the pre-trained model.

generation

Data

```
// Split the train data

\mathcal{D}_1, \mathcal{D}_2 \leftarrow \text{Split } \mathcal{D} \text{ into two halves}

// 1. Initial fine-tuning

p_{\theta_0} \leftarrow \text{Fine-tune } p_{\text{LM}} \text{ on } \mathcal{D}_1

// 2. Noisy generation

\widetilde{\mathcal{D}}_2 \leftarrow \{\}

for (c, y) \text{ in } \mathcal{D}_2 \text{ do}

y^- \leftarrow \text{noisy_generation}(c, p_{\text{LM}}, p_{\theta_0})

Append (c, y, y^-) to \widetilde{\mathcal{D}}_2

// 3. Preference fine-tuning by optimizing Equation (1)
```

 \mathcal{T}_{3} . Preference fine-tuning by optimizing Equation (1) $p_{\theta} \leftarrow$ Preference fine-tune p_{θ_0} over $\widetilde{\mathcal{D}}_2$, using y as the preferred label and y^- as the negative example **return** p_{θ} ; Results

		ТоТТо			E2E			FeTaQA			WebNLG	ł
	NLI	PAR	BLEU	NLI	PAR	BLEU	NLI	PAR	BLEU	NLI	PAR	BLEU
Llama2-7b												
Sft	46.42	80.55	-	92.62	86.41	41.81	39.06	78.68	39.72	79.36	79.19	48.37
Cad	46.33	80.59	-	92.74	86.35	41.32	39.67	78.93	39.64	79.62	79.45	48.95
CRITIC	46.22	80.66	-	92.70	86.45	41.82	39.10	78.67	39.94	79.47	79.51	48.83
Рмі	46.36	80.51	-	92.66	86.42	41.78	39.23	78.52	39.71	79.54	79.30	48.45
CLIFF	46.69	80.77	-	92.64	86.47	41.78	39.67	79.11	40.48	79.92	79.31	47.99
SCOPE (ours)	51.88*	86.11*	-	94.64*	87.21*	38.70	42.97*	83.40*	38.96	83.42*	85.95*	48.16
Llama2-13b												
Sft	46.56	80.47	-	93.39	86.42	41.26	39.66	79.22	40.72	80.07	78.14	48.77
Cad	46.68	80.66	-	93.25	86.41	41.24	39.56	79.21	40.65	82.55	79.06	49.78
CRITIC	46.59	80.73	-	93.58	86.44	41.17	39.82	79.51	40.37	80.24	78.37	49.10
Рмі	46.55	80.46	-	93.43	86.35	41.23	40.03	79.32	40.77	80.02	78.38	49.02
CLIFF	47.04	80.68	-	92.42	86.47	41.49	38.85	79.06	41.05	80.15	79.09	48.16
SCOPE (ours)	54.27*	86.58*	-	91.61	87.37*	39.09	41.91	83.30*	36.77	84.44*	87.26*	48.02
MISTRAL-7B												
Sft	46.70	80.79	-	92.64	85.88	41.16	39.90	79.31	41.47	84.71	80.58	50.85
CAD	46.40	80.37	-	92.28	85.80	40.65	39.99	79.61	41.18	85.26	80.55	50.72
CRITIC	46.72	80.75	-	92.80	85.97	40.00	39.55	79.50	41.43	84.62	80.71	50.94
Рмі	46.48	80.33	-	92.80	85.88	41.18	39.80	79.30	41.49	84.86	80.58	50.87
CLIFF	47.30	80.89	-	92.86	85.99	41.23	40.25	79.45	41.88	84.29	80.52	50.57
SCOPE (ours)	53.45*	89.01*	-	93.43	87.09*	40.44	42.03	81.49*	40.33	86.39*	80.41	52.20

Results

	SAMSum			XSum			PubMed					
	Align	FactCC	QEval	R-L	Align	FactCC	QEval	R-L	Align	FactCC	QEval	R-L
Llama2-7b												
Sft	80.66	78.51	44.83	45.20	56.25	74.63	31.99	34.92	46.89	35.84	34.60	24.58
Cad	81.65	79.37	45.01	45.01	57.58	77.83	32.26	33.73	52.68	43.05	33.65	22.50
Critic	81.52	77.66	45.18	44.81	55.80	74.23	32.03	34.15	48.02	37.56	33.71	23.80
Рмі	81.03	77.29	44.95	45.15	56.29	74.33	31.99	34.90	48.03	36.34	34.45	23.56
CLIFF	81.30	76.68	44.77	44.72	57.46	74.70	32.23	35.58	45.64	37.56	34.06	23.97
SCOPE	83.67*	81.93	46.65*	42.15	65.10*	89.05*	38.76*	27.58	58.17*	58.63*	38.53*	24.00
Llama2-13b												
Sft	81.59	78.63	44.10	44.60	56.53	75.75	31.72	36.14	47.51	38.93	34.83	24.02
Cad	81.35	80.59	44.21	43.43	57.22	77.45	31.99	35.89	52.81	47.79	34.67	23.17
Critic	81.14	78.14	44.40	42.88	56.53	75.16	31.81	35.97	49.06	40.46	34.63	22.35
Рмі	81.82	78.14	44.04	44.75	56.56	75.47	31.75	36.20	50.87	36.79	34.82	23.32
CLIFF	81.61	76.80	44.96	44.19	56.52	75.27	31.67	36.10	45.60	40.76	34.30	24.39
SCOPE	84.20*	81.69	46.45*	44.98	66.03*	84.06*	37.17*	31.59	58.68*	61.22*	39.10*	23.85
MISTRAL-7B												
Sft	82.59	75.75	31.25	44.20	57.20	75.76	31.25	36.25	43.60	35.10	33.32	25.07
CAD	83.10	79.37	45.52	43.98	57.31	78.55	31.32	35.24	45.36	42.75	31.72	23.63
CRITIC	82.76	79.24	45.63	44.07	57.65	74.67	31.81	33.68	46.80	38.78	33.13	23.55
Рмі	82.45	80.46	45.49	44.17	57.47	76.76	30.83	36.17	44.08	37.86	32.59	24.37
CLIFF	82.50	79.24	45.60	44.30	58.20	75.33	31.83	37.14	45.90	40.61	34.18	25.50
SCOPE	83.70*	80.59	46.21*	42.72	62.17*	84.36*	36.33*	24.61	55.37*	48.55*	37.01*	24.03

Introduction	Evaluation	Optimization 000000000000000000000000000000000000	Conclusion
Results			

GPT4 as a judge

	ТоТТо		E2E			FeTaQA			WebNLG			
	Win%	Tie%	Loss%	Win%	Tie%	Loss%	Win%	Tie%	Loss%	Win%	Tie%	Loss%
CAD	3,47	93,11	3,42	1,79	92,20	6,01	7,59	86,78	5,62	8,70	82,1	9,20
PMI	2,82	94,33	2,85	0.49	99.02	0.49	5.90	86.01	8.10	7.98	84.26	7.76
CRITIC	4.37	91.5	4.13	0,87	98.00	1,14	5,85	89,49	4,67	6,90	86,25	6,85
CLIFF	14.57	72.37	13.06	3.14	92.15	4.71	20.92	58.66	20.42	14.90	67.96	17.14
SCOPE (ours)	35.03*	47.26	17.71	11.04*	84.79	4.17	29.96	45.53	24.51	29.85*	55.93	14.22

Human evaluation:

	Win%	Tie%	Loss%
SFT	15.2	44.8	40.0
Scope	40.0	44.8	15.2

Qualitative analysis when SCOPE>SFT in GPT4

Input	SFT	SCOPE
Joana: wana play some games? Sandy: what games? Joana: maybe dixit? Joana: or carcassonne? Sandy: why not? Joana: ok, I'll bring them 2 u Sandy: great :)	Joana will bring Dixit and Carcassonne to Sandy.	Joana will bring Dixit and Carcassonne <mark>games</mark> for Sandy.
Ana: You sleeping? Catherine: Not yet. Ana: Wanna go visit grandma tomorrow? I miss her. Catherine: Yeah that would be nice :) I'll call you when I wake up Ana: Oki :) sleep well, good night. Catherine: Good night, u too.	Ana and Catherine will visit grandma tomorrow.	Catherine will call Ana when she wakes up tomorrow to visit grandma tomorrow.
"Ellie: hey, are you at the university? Aaliyah: yep Camille: I'm sick :/ Ellie: shietthat's bad Ellie: Aali, where are we having our classes now? Aaliyah: 342 on the second floor"	Ellie, Aaliyah and Camille are at the university. They have their classes in 342 on the second floor.	Aaliyah is at the university in 342 on the second floor. <mark>Camille is sick</mark> .

Regularization:

$$\mathcal{L}_{ heta} = -\mathbb{E}_{(c,y,y^-)\sim\mathcal{D}_2}\left[\log\sigma\left(eta\lograc{p_{ heta}(y\mid c)}{p_{ heta_0}(y\mid c)} - eta\lograc{p_{ heta}\left(y^-\mid c
ight)}{p_{ heta_0}\left(y^-\mid c
ight)}
ight)
ight]$$

Noisy sampling:

$$y_{t}^{-} \sim \left(1 - rac{lpha_{t}}{lpha}
ight) p_{ heta_{0}}\left(\cdot \mid y_{< t}^{-}, c
ight) + rac{lpha_{t}}{lpha_{t}} p_{ ext{LM}}\left(\cdot \mid y_{< t}^{-}
ight)$$

	ТоТТ	0	XSum			
β	PARENT	NLI	ROUGE-L	AlignScore		
0.05	83.54	48.31	29.51	65.16		
0.1	85.39	49.21	30.66	65.37		
1	81.98	46.24	33.80	59.30		
5	81.04	45.80	33.84	57.45		

Same setting as in DPO for β \Rightarrow Still stable :)

$$\mathcal{L}_{ heta} = -\mathbb{E}_{(c,y,y^{-})\sim\mathcal{D}_{2}}\left[\log\sigma\left(eta\lograc{p_{ heta}(y\mid c)}{p_{ heta_{0}}(y\mid c)} - eta\lograc{p_{ heta}\left(y^{-}\mid c
ight)}{p_{ heta_{0}}\left(y^{-}\mid c
ight)}
ight)
ight]$$

Noisy sampling:

$$y_t^- \sim \left(1 - rac{lpha_t}{lpha_t}
ight) p_{ heta_0} \left(\cdot \mid y_{< t}^-, c
ight) + rac{lpha_t}{lpha_t} p_{ ext{LM}} \left(\cdot \mid y_{< t}^-
ight)$$

CONCLUSION

LLMs, reliability & frugality

■ Is it important to work on faithfulness?

- What about a few percentage points if the architecture is intrinsically unreliable?
- What opportunities exist for frugal architectures?
 - What are the costs of accessing information between a (very) large language model and an LLM+RAG setup?
- If information access becomes critical, can we trust black box LLMs? (even with RAG)?

29/29